Whakaoti mō x
x=-\frac{6}{7}\approx -0.857142857
x=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\left(-7x-6\right)=0
Tauwehea te x.
x=0 x=-\frac{6}{7}
Hei kimi otinga whārite, me whakaoti te x=0 me te -7x-6=0.
-7x^{2}-6x=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\left(-7\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -7 mō a, -6 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±6}{2\left(-7\right)}
Tuhia te pūtakerua o te \left(-6\right)^{2}.
x=\frac{6±6}{2\left(-7\right)}
Ko te tauaro o -6 ko 6.
x=\frac{6±6}{-14}
Whakareatia 2 ki te -7.
x=\frac{12}{-14}
Nā, me whakaoti te whārite x=\frac{6±6}{-14} ina he tāpiri te ±. Tāpiri 6 ki te 6.
x=-\frac{6}{7}
Whakahekea te hautanga \frac{12}{-14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{-14}
Nā, me whakaoti te whārite x=\frac{6±6}{-14} ina he tango te ±. Tango 6 mai i 6.
x=0
Whakawehe 0 ki te -14.
x=-\frac{6}{7} x=0
Kua oti te whārite te whakatau.
-7x^{2}-6x=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-7x^{2}-6x}{-7}=\frac{0}{-7}
Whakawehea ngā taha e rua ki te -7.
x^{2}+\left(-\frac{6}{-7}\right)x=\frac{0}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
x^{2}+\frac{6}{7}x=\frac{0}{-7}
Whakawehe -6 ki te -7.
x^{2}+\frac{6}{7}x=0
Whakawehe 0 ki te -7.
x^{2}+\frac{6}{7}x+\left(\frac{3}{7}\right)^{2}=\left(\frac{3}{7}\right)^{2}
Whakawehea te \frac{6}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{7}. Nā, tāpiria te pūrua o te \frac{3}{7} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{6}{7}x+\frac{9}{49}=\frac{9}{49}
Pūruatia \frac{3}{7} mā te pūrua i te taurunga me te tauraro o te hautanga.
\left(x+\frac{3}{7}\right)^{2}=\frac{9}{49}
Tauwehea x^{2}+\frac{6}{7}x+\frac{9}{49}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{7}\right)^{2}}=\sqrt{\frac{9}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{7}=\frac{3}{7} x+\frac{3}{7}=-\frac{3}{7}
Whakarūnātia.
x=0 x=-\frac{6}{7}
Me tango \frac{3}{7} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}