Whakaoti mō x (complex solution)
x=\frac{-\sqrt{87}i+5}{14}\approx 0.357142857-0.666241361i
x=\frac{5+\sqrt{87}i}{14}\approx 0.357142857+0.666241361i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-7x^{2}+5x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-5±\sqrt{5^{2}-4\left(-7\right)\left(-4\right)}}{2\left(-7\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -7 mō a, 5 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-7\right)\left(-4\right)}}{2\left(-7\right)}
Pūrua 5.
x=\frac{-5±\sqrt{25+28\left(-4\right)}}{2\left(-7\right)}
Whakareatia -4 ki te -7.
x=\frac{-5±\sqrt{25-112}}{2\left(-7\right)}
Whakareatia 28 ki te -4.
x=\frac{-5±\sqrt{-87}}{2\left(-7\right)}
Tāpiri 25 ki te -112.
x=\frac{-5±\sqrt{87}i}{2\left(-7\right)}
Tuhia te pūtakerua o te -87.
x=\frac{-5±\sqrt{87}i}{-14}
Whakareatia 2 ki te -7.
x=\frac{-5+\sqrt{87}i}{-14}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{87}i}{-14} ina he tāpiri te ±. Tāpiri -5 ki te i\sqrt{87}.
x=\frac{-\sqrt{87}i+5}{14}
Whakawehe -5+i\sqrt{87} ki te -14.
x=\frac{-\sqrt{87}i-5}{-14}
Nā, me whakaoti te whārite x=\frac{-5±\sqrt{87}i}{-14} ina he tango te ±. Tango i\sqrt{87} mai i -5.
x=\frac{5+\sqrt{87}i}{14}
Whakawehe -5-i\sqrt{87} ki te -14.
x=\frac{-\sqrt{87}i+5}{14} x=\frac{5+\sqrt{87}i}{14}
Kua oti te whārite te whakatau.
-7x^{2}+5x-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-7x^{2}+5x-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
-7x^{2}+5x=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
-7x^{2}+5x=4
Tango -4 mai i 0.
\frac{-7x^{2}+5x}{-7}=\frac{4}{-7}
Whakawehea ngā taha e rua ki te -7.
x^{2}+\frac{5}{-7}x=\frac{4}{-7}
Mā te whakawehe ki te -7 ka wetekia te whakareanga ki te -7.
x^{2}-\frac{5}{7}x=\frac{4}{-7}
Whakawehe 5 ki te -7.
x^{2}-\frac{5}{7}x=-\frac{4}{7}
Whakawehe 4 ki te -7.
x^{2}-\frac{5}{7}x+\left(-\frac{5}{14}\right)^{2}=-\frac{4}{7}+\left(-\frac{5}{14}\right)^{2}
Whakawehea te -\frac{5}{7}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{14}. Nā, tāpiria te pūrua o te -\frac{5}{14} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{7}x+\frac{25}{196}=-\frac{4}{7}+\frac{25}{196}
Pūruatia -\frac{5}{14} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{7}x+\frac{25}{196}=-\frac{87}{196}
Tāpiri -\frac{4}{7} ki te \frac{25}{196} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{5}{14}\right)^{2}=-\frac{87}{196}
Tauwehea x^{2}-\frac{5}{7}x+\frac{25}{196}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{14}\right)^{2}}=\sqrt{-\frac{87}{196}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{14}=\frac{\sqrt{87}i}{14} x-\frac{5}{14}=-\frac{\sqrt{87}i}{14}
Whakarūnātia.
x=\frac{5+\sqrt{87}i}{14} x=\frac{-\sqrt{87}i+5}{14}
Me tāpiri \frac{5}{14} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}