- 7 ( 4 + 4 p ) + 3 p = 8 p - 4 ( p + 7
Whakaoti mō p
p=0
Tohaina
Kua tāruatia ki te papatopenga
-28-28p+3p=8p-4\left(p+7\right)
Whakamahia te āhuatanga tohatoha hei whakarea te -7 ki te 4+4p.
-28-25p=8p-4\left(p+7\right)
Pahekotia te -28p me 3p, ka -25p.
-28-25p=8p-4p-28
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te p+7.
-28-25p=4p-28
Pahekotia te 8p me -4p, ka 4p.
-28-25p-4p=-28
Tangohia te 4p mai i ngā taha e rua.
-28-29p=-28
Pahekotia te -25p me -4p, ka -29p.
-29p=-28+28
Me tāpiri te 28 ki ngā taha e rua.
-29p=0
Tāpirihia te -28 ki te 28, ka 0.
p=0
He ōrite te hua o ngā tau e rua ki 0 ina 0 tētahi o rāua te iti rawa. Tātemea kāore te -29 e ōrite ki 0, me ōrite pū te p ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}