Whakaoti mō x
x=-\frac{1989}{946120000000}\approx -2.102270325 \cdot 10^{-9}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-663\times 10^{-34}\times 3\times 10^{9}=94612\times 10^{-18}x
Whakareatia ngā taha e rua o te whārite ki te 434.
-663\times \frac{1}{10000000000000000000000000000000000}\times 3\times 10^{9}=94612\times 10^{-18}x
Tātaihia te 10 mā te pū o -34, kia riro ko \frac{1}{10000000000000000000000000000000000}.
-\frac{663}{10000000000000000000000000000000000}\times 3\times 10^{9}=94612\times 10^{-18}x
Whakareatia te -663 ki te \frac{1}{10000000000000000000000000000000000}, ka -\frac{663}{10000000000000000000000000000000000}.
-\frac{1989}{10000000000000000000000000000000000}\times 10^{9}=94612\times 10^{-18}x
Whakareatia te -\frac{663}{10000000000000000000000000000000000} ki te 3, ka -\frac{1989}{10000000000000000000000000000000000}.
-\frac{1989}{10000000000000000000000000000000000}\times 1000000000=94612\times 10^{-18}x
Tātaihia te 10 mā te pū o 9, kia riro ko 1000000000.
-\frac{1989}{10000000000000000000000000}=94612\times 10^{-18}x
Whakareatia te -\frac{1989}{10000000000000000000000000000000000} ki te 1000000000, ka -\frac{1989}{10000000000000000000000000}.
-\frac{1989}{10000000000000000000000000}=94612\times \frac{1}{1000000000000000000}x
Tātaihia te 10 mā te pū o -18, kia riro ko \frac{1}{1000000000000000000}.
-\frac{1989}{10000000000000000000000000}=\frac{23653}{250000000000000000}x
Whakareatia te 94612 ki te \frac{1}{1000000000000000000}, ka \frac{23653}{250000000000000000}.
\frac{23653}{250000000000000000}x=-\frac{1989}{10000000000000000000000000}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=-\frac{1989}{10000000000000000000000000}\times \frac{250000000000000000}{23653}
Me whakarea ngā taha e rua ki te \frac{250000000000000000}{23653}, te tau utu o \frac{23653}{250000000000000000}.
x=-\frac{1989}{946120000000}
Whakareatia te -\frac{1989}{10000000000000000000000000} ki te \frac{250000000000000000}{23653}, ka -\frac{1989}{946120000000}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}