Whakaoti mō m
m=-5.2
Tohaina
Kua tāruatia ki te papatopenga
-3.5m-1.1=\frac{-107.73}{-6.3}
Whakawehea ngā taha e rua ki te -6.3.
-3.5m-1.1=\frac{-10773}{-630}
Whakarohaina te \frac{-107.73}{-6.3} mā te whakarea i te taurunga me te tauraro ki te 100.
-3.5m-1.1=\frac{171}{10}
Whakahekea te hautanga \frac{-10773}{-630} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -63.
-3.5m=\frac{171}{10}+1.1
Me tāpiri te 1.1 ki ngā taha e rua.
-3.5m=\frac{171}{10}+\frac{11}{10}
Me tahuri ki tau ā-ira 1.1 ki te hautau \frac{11}{10}.
-3.5m=\frac{171+11}{10}
Tā te mea he rite te tauraro o \frac{171}{10} me \frac{11}{10}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-3.5m=\frac{182}{10}
Tāpirihia te 171 ki te 11, ka 182.
-3.5m=\frac{91}{5}
Whakahekea te hautanga \frac{182}{10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
m=\frac{\frac{91}{5}}{-3.5}
Whakawehea ngā taha e rua ki te -3.5.
m=\frac{91}{5\left(-3.5\right)}
Tuhia te \frac{\frac{91}{5}}{-3.5} hei hautanga kotahi.
m=\frac{91}{-17.5}
Whakareatia te 5 ki te -3.5, ka -17.5.
m=\frac{910}{-175}
Whakarohaina te \frac{91}{-17.5} mā te whakarea i te taurunga me te tauraro ki te 10.
m=-\frac{26}{5}
Whakahekea te hautanga \frac{910}{-175} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 35.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}