Whakaoti mō x
x=\frac{1}{2}=0.5
x=-1
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x^{2}-3x=-3
Tangohia te 3x mai i ngā taha e rua.
-6x^{2}-3x+3=0
Me tāpiri te 3 ki ngā taha e rua.
-2x^{2}-x+1=0
Whakawehea ngā taha e rua ki te 3.
a+b=-1 ab=-2=-2
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -2x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=-2
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-2x^{2}+x\right)+\left(-2x+1\right)
Tuhia anō te -2x^{2}-x+1 hei \left(-2x^{2}+x\right)+\left(-2x+1\right).
-x\left(2x-1\right)-\left(2x-1\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(2x-1\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi 2x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{2} x=-1
Hei kimi otinga whārite, me whakaoti te 2x-1=0 me te -x-1=0.
-6x^{2}-3x=-3
Tangohia te 3x mai i ngā taha e rua.
-6x^{2}-3x+3=0
Me tāpiri te 3 ki ngā taha e rua.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-6\right)\times 3}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, -3 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-6\right)\times 3}}{2\left(-6\right)}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9+24\times 3}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\left(-6\right)}
Whakareatia 24 ki te 3.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\left(-6\right)}
Tāpiri 9 ki te 72.
x=\frac{-\left(-3\right)±9}{2\left(-6\right)}
Tuhia te pūtakerua o te 81.
x=\frac{3±9}{2\left(-6\right)}
Ko te tauaro o -3 ko 3.
x=\frac{3±9}{-12}
Whakareatia 2 ki te -6.
x=\frac{12}{-12}
Nā, me whakaoti te whārite x=\frac{3±9}{-12} ina he tāpiri te ±. Tāpiri 3 ki te 9.
x=-1
Whakawehe 12 ki te -12.
x=-\frac{6}{-12}
Nā, me whakaoti te whārite x=\frac{3±9}{-12} ina he tango te ±. Tango 9 mai i 3.
x=\frac{1}{2}
Whakahekea te hautanga \frac{-6}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-1 x=\frac{1}{2}
Kua oti te whārite te whakatau.
-6x^{2}-3x=-3
Tangohia te 3x mai i ngā taha e rua.
\frac{-6x^{2}-3x}{-6}=-\frac{3}{-6}
Whakawehea ngā taha e rua ki te -6.
x^{2}+\left(-\frac{3}{-6}\right)x=-\frac{3}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x^{2}+\frac{1}{2}x=-\frac{3}{-6}
Whakahekea te hautanga \frac{-3}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{1}{2}x=\frac{1}{2}
Whakahekea te hautanga \frac{-3}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
Tāpiri \frac{1}{2} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
Tauwehea x^{2}+\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
Whakarūnātia.
x=\frac{1}{2} x=-1
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}