Whakaoti mō x
x=1
x=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x^{2}+9x-6+4x^{2}=x
Me tāpiri te 4x^{2} ki ngā taha e rua.
-2x^{2}+9x-6=x
Pahekotia te -6x^{2} me 4x^{2}, ka -2x^{2}.
-2x^{2}+9x-6-x=0
Tangohia te x mai i ngā taha e rua.
-2x^{2}+8x-6=0
Pahekotia te 9x me -x, ka 8x.
-x^{2}+4x-3=0
Whakawehea ngā taha e rua ki te 2.
a+b=4 ab=-\left(-3\right)=3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=3 b=1
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+3x\right)+\left(x-3\right)
Tuhia anō te -x^{2}+4x-3 hei \left(-x^{2}+3x\right)+\left(x-3\right).
-x\left(x-3\right)+x-3
Whakatauwehea atu -x i te -x^{2}+3x.
\left(x-3\right)\left(-x+1\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=3 x=1
Hei kimi otinga whārite, me whakaoti te x-3=0 me te -x+1=0.
-6x^{2}+9x-6+4x^{2}=x
Me tāpiri te 4x^{2} ki ngā taha e rua.
-2x^{2}+9x-6=x
Pahekotia te -6x^{2} me 4x^{2}, ka -2x^{2}.
-2x^{2}+9x-6-x=0
Tangohia te x mai i ngā taha e rua.
-2x^{2}+8x-6=0
Pahekotia te 9x me -x, ka 8x.
x=\frac{-8±\sqrt{8^{2}-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -2 mō a, 8 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-2\right)\left(-6\right)}}{2\left(-2\right)}
Pūrua 8.
x=\frac{-8±\sqrt{64+8\left(-6\right)}}{2\left(-2\right)}
Whakareatia -4 ki te -2.
x=\frac{-8±\sqrt{64-48}}{2\left(-2\right)}
Whakareatia 8 ki te -6.
x=\frac{-8±\sqrt{16}}{2\left(-2\right)}
Tāpiri 64 ki te -48.
x=\frac{-8±4}{2\left(-2\right)}
Tuhia te pūtakerua o te 16.
x=\frac{-8±4}{-4}
Whakareatia 2 ki te -2.
x=-\frac{4}{-4}
Nā, me whakaoti te whārite x=\frac{-8±4}{-4} ina he tāpiri te ±. Tāpiri -8 ki te 4.
x=1
Whakawehe -4 ki te -4.
x=-\frac{12}{-4}
Nā, me whakaoti te whārite x=\frac{-8±4}{-4} ina he tango te ±. Tango 4 mai i -8.
x=3
Whakawehe -12 ki te -4.
x=1 x=3
Kua oti te whārite te whakatau.
-6x^{2}+9x-6+4x^{2}=x
Me tāpiri te 4x^{2} ki ngā taha e rua.
-2x^{2}+9x-6=x
Pahekotia te -6x^{2} me 4x^{2}, ka -2x^{2}.
-2x^{2}+9x-6-x=0
Tangohia te x mai i ngā taha e rua.
-2x^{2}+8x-6=0
Pahekotia te 9x me -x, ka 8x.
-2x^{2}+8x=6
Me tāpiri te 6 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-2x^{2}+8x}{-2}=\frac{6}{-2}
Whakawehea ngā taha e rua ki te -2.
x^{2}+\frac{8}{-2}x=\frac{6}{-2}
Mā te whakawehe ki te -2 ka wetekia te whakareanga ki te -2.
x^{2}-4x=\frac{6}{-2}
Whakawehe 8 ki te -2.
x^{2}-4x=-3
Whakawehe 6 ki te -2.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-4x+4=-3+4
Pūrua -2.
x^{2}-4x+4=1
Tāpiri -3 ki te 4.
\left(x-2\right)^{2}=1
Tauwehea x^{2}-4x+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-2=1 x-2=-1
Whakarūnātia.
x=3 x=1
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}