Whakaoti mō x (complex solution)
x=1+4\sqrt{5}i\approx 1+8.94427191i
x=-4\sqrt{5}i+1\approx 1-8.94427191i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-6x^{2}+12x-486=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-12±\sqrt{12^{2}-4\left(-6\right)\left(-486\right)}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, 12 mō b, me -486 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-6\right)\left(-486\right)}}{2\left(-6\right)}
Pūrua 12.
x=\frac{-12±\sqrt{144+24\left(-486\right)}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-12±\sqrt{144-11664}}{2\left(-6\right)}
Whakareatia 24 ki te -486.
x=\frac{-12±\sqrt{-11520}}{2\left(-6\right)}
Tāpiri 144 ki te -11664.
x=\frac{-12±48\sqrt{5}i}{2\left(-6\right)}
Tuhia te pūtakerua o te -11520.
x=\frac{-12±48\sqrt{5}i}{-12}
Whakareatia 2 ki te -6.
x=\frac{-12+48\sqrt{5}i}{-12}
Nā, me whakaoti te whārite x=\frac{-12±48\sqrt{5}i}{-12} ina he tāpiri te ±. Tāpiri -12 ki te 48i\sqrt{5}.
x=-4\sqrt{5}i+1
Whakawehe -12+48i\sqrt{5} ki te -12.
x=\frac{-48\sqrt{5}i-12}{-12}
Nā, me whakaoti te whārite x=\frac{-12±48\sqrt{5}i}{-12} ina he tango te ±. Tango 48i\sqrt{5} mai i -12.
x=1+4\sqrt{5}i
Whakawehe -12-48i\sqrt{5} ki te -12.
x=-4\sqrt{5}i+1 x=1+4\sqrt{5}i
Kua oti te whārite te whakatau.
-6x^{2}+12x-486=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-6x^{2}+12x-486-\left(-486\right)=-\left(-486\right)
Me tāpiri 486 ki ngā taha e rua o te whārite.
-6x^{2}+12x=-\left(-486\right)
Mā te tango i te -486 i a ia ake anō ka toe ko te 0.
-6x^{2}+12x=486
Tango -486 mai i 0.
\frac{-6x^{2}+12x}{-6}=\frac{486}{-6}
Whakawehea ngā taha e rua ki te -6.
x^{2}+\frac{12}{-6}x=\frac{486}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x^{2}-2x=\frac{486}{-6}
Whakawehe 12 ki te -6.
x^{2}-2x=-81
Whakawehe 486 ki te -6.
x^{2}-2x+1=-81+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=-80
Tāpiri -81 ki te 1.
\left(x-1\right)^{2}=-80
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-80}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=4\sqrt{5}i x-1=-4\sqrt{5}i
Whakarūnātia.
x=1+4\sqrt{5}i x=-4\sqrt{5}i+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}