Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

p+q=1 pq=-6\times 12=-72
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -6b^{2}+pb+qb+12. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōrunga te p+q, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
p=9 q=-8
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(-6b^{2}+9b\right)+\left(-8b+12\right)
Tuhia anō te -6b^{2}+b+12 hei \left(-6b^{2}+9b\right)+\left(-8b+12\right).
-3b\left(2b-3\right)-4\left(2b-3\right)
Tauwehea te -3b i te tuatahi me te -4 i te rōpū tuarua.
\left(2b-3\right)\left(-3b-4\right)
Whakatauwehea atu te kīanga pātahi 2b-3 mā te whakamahi i te āhuatanga tātai tohatoha.
-6b^{2}+b+12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-1±\sqrt{1^{2}-4\left(-6\right)\times 12}}{2\left(-6\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-1±\sqrt{1-4\left(-6\right)\times 12}}{2\left(-6\right)}
Pūrua 1.
b=\frac{-1±\sqrt{1+24\times 12}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
b=\frac{-1±\sqrt{1+288}}{2\left(-6\right)}
Whakareatia 24 ki te 12.
b=\frac{-1±\sqrt{289}}{2\left(-6\right)}
Tāpiri 1 ki te 288.
b=\frac{-1±17}{2\left(-6\right)}
Tuhia te pūtakerua o te 289.
b=\frac{-1±17}{-12}
Whakareatia 2 ki te -6.
b=\frac{16}{-12}
Nā, me whakaoti te whārite b=\frac{-1±17}{-12} ina he tāpiri te ±. Tāpiri -1 ki te 17.
b=-\frac{4}{3}
Whakahekea te hautanga \frac{16}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
b=-\frac{18}{-12}
Nā, me whakaoti te whārite b=\frac{-1±17}{-12} ina he tango te ±. Tango 17 mai i -1.
b=\frac{3}{2}
Whakahekea te hautanga \frac{-18}{-12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
-6b^{2}+b+12=-6\left(b-\left(-\frac{4}{3}\right)\right)\left(b-\frac{3}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{4}{3} mō te x_{1} me te \frac{3}{2} mō te x_{2}.
-6b^{2}+b+12=-6\left(b+\frac{4}{3}\right)\left(b-\frac{3}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-6b^{2}+b+12=-6\times \frac{-3b-4}{-3}\left(b-\frac{3}{2}\right)
Tāpiri \frac{4}{3} ki te b mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-6b^{2}+b+12=-6\times \frac{-3b-4}{-3}\times \frac{-2b+3}{-2}
Tango \frac{3}{2} mai i b mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-6b^{2}+b+12=-6\times \frac{\left(-3b-4\right)\left(-2b+3\right)}{-3\left(-2\right)}
Whakareatia \frac{-3b-4}{-3} ki te \frac{-2b+3}{-2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-6b^{2}+b+12=-6\times \frac{\left(-3b-4\right)\left(-2b+3\right)}{6}
Whakareatia -3 ki te -2.
-6b^{2}+b+12=-\left(-3b-4\right)\left(-2b+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te -6 me te 6.