Tīpoka ki ngā ihirangi matua
Whakaoti mō y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-12\left(-\frac{3y-2}{2}\right)+24y=2
Whakareatia ngā taha e rua o te whārite ki te 2.
12\times \frac{3y-2}{2}+24y=2
Whakareatia te -12 ki te -1, ka 12.
12\left(\frac{3}{2}y-1\right)+24y=2
Whakawehea ia wā o 3y-2 ki te 2, kia riro ko \frac{3}{2}y-1.
12\times \frac{3}{2}y-12+24y=2
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te \frac{3}{2}y-1.
\frac{12\times 3}{2}y-12+24y=2
Tuhia te 12\times \frac{3}{2} hei hautanga kotahi.
\frac{36}{2}y-12+24y=2
Whakareatia te 12 ki te 3, ka 36.
18y-12+24y=2
Whakawehea te 36 ki te 2, kia riro ko 18.
42y-12=2
Pahekotia te 18y me 24y, ka 42y.
42y=2+12
Me tāpiri te 12 ki ngā taha e rua.
42y=14
Tāpirihia te 2 ki te 12, ka 14.
y=\frac{14}{42}
Whakawehea ngā taha e rua ki te 42.
y=\frac{1}{3}
Whakahekea te hautanga \frac{14}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.