Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-36\times 2}{2+2\sqrt{27}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{-72}{2+2\sqrt{27}}
Whakareatia te -36 ki te 2, ka -72.
\frac{-72}{2+2\times 3\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{-72}{2+6\sqrt{3}}
Whakareatia te 2 ki te 3, ka 6.
\frac{-72\left(2-6\sqrt{3}\right)}{\left(2+6\sqrt{3}\right)\left(2-6\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{-72}{2+6\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2-6\sqrt{3}.
\frac{-72\left(2-6\sqrt{3}\right)}{2^{2}-\left(6\sqrt{3}\right)^{2}}
Whakaarohia te \left(2+6\sqrt{3}\right)\left(2-6\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-72\left(2-6\sqrt{3}\right)}{4-\left(6\sqrt{3}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{-72\left(2-6\sqrt{3}\right)}{4-6^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(6\sqrt{3}\right)^{2}.
\frac{-72\left(2-6\sqrt{3}\right)}{4-36\left(\sqrt{3}\right)^{2}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{-72\left(2-6\sqrt{3}\right)}{4-36\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{-72\left(2-6\sqrt{3}\right)}{4-108}
Whakareatia te 36 ki te 3, ka 108.
\frac{-72\left(2-6\sqrt{3}\right)}{-104}
Tangohia te 108 i te 4, ka -104.
\frac{9}{13}\left(2-6\sqrt{3}\right)
Whakawehea te -72\left(2-6\sqrt{3}\right) ki te -104, kia riro ko \frac{9}{13}\left(2-6\sqrt{3}\right).
\frac{9}{13}\times 2+\frac{9}{13}\left(-6\right)\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{9}{13} ki te 2-6\sqrt{3}.
\frac{9\times 2}{13}+\frac{9}{13}\left(-6\right)\sqrt{3}
Tuhia te \frac{9}{13}\times 2 hei hautanga kotahi.
\frac{18}{13}+\frac{9}{13}\left(-6\right)\sqrt{3}
Whakareatia te 9 ki te 2, ka 18.
\frac{18}{13}+\frac{9\left(-6\right)}{13}\sqrt{3}
Tuhia te \frac{9}{13}\left(-6\right) hei hautanga kotahi.
\frac{18}{13}+\frac{-54}{13}\sqrt{3}
Whakareatia te 9 ki te -6, ka -54.
\frac{18}{13}-\frac{54}{13}\sqrt{3}
Ka taea te hautanga \frac{-54}{13} te tuhi anō ko -\frac{54}{13} mā te tango i te tohu tōraro.