Aromātai
\frac{18-54\sqrt{3}}{13}\approx -5.810057201
Tohaina
Kua tāruatia ki te papatopenga
\frac{-36\times 2}{2+2\sqrt{27}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{-72}{2+2\sqrt{27}}
Whakareatia te -36 ki te 2, ka -72.
\frac{-72}{2+2\times 3\sqrt{3}}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
\frac{-72}{2+6\sqrt{3}}
Whakareatia te 2 ki te 3, ka 6.
\frac{-72\left(2-6\sqrt{3}\right)}{\left(2+6\sqrt{3}\right)\left(2-6\sqrt{3}\right)}
Whakangāwaritia te tauraro o \frac{-72}{2+6\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te 2-6\sqrt{3}.
\frac{-72\left(2-6\sqrt{3}\right)}{2^{2}-\left(6\sqrt{3}\right)^{2}}
Whakaarohia te \left(2+6\sqrt{3}\right)\left(2-6\sqrt{3}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-72\left(2-6\sqrt{3}\right)}{4-\left(6\sqrt{3}\right)^{2}}
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{-72\left(2-6\sqrt{3}\right)}{4-6^{2}\left(\sqrt{3}\right)^{2}}
Whakarohaina te \left(6\sqrt{3}\right)^{2}.
\frac{-72\left(2-6\sqrt{3}\right)}{4-36\left(\sqrt{3}\right)^{2}}
Tātaihia te 6 mā te pū o 2, kia riro ko 36.
\frac{-72\left(2-6\sqrt{3}\right)}{4-36\times 3}
Ko te pūrua o \sqrt{3} ko 3.
\frac{-72\left(2-6\sqrt{3}\right)}{4-108}
Whakareatia te 36 ki te 3, ka 108.
\frac{-72\left(2-6\sqrt{3}\right)}{-104}
Tangohia te 108 i te 4, ka -104.
\frac{9}{13}\left(2-6\sqrt{3}\right)
Whakawehea te -72\left(2-6\sqrt{3}\right) ki te -104, kia riro ko \frac{9}{13}\left(2-6\sqrt{3}\right).
\frac{9}{13}\times 2+\frac{9}{13}\left(-6\right)\sqrt{3}
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{9}{13} ki te 2-6\sqrt{3}.
\frac{9\times 2}{13}+\frac{9}{13}\left(-6\right)\sqrt{3}
Tuhia te \frac{9}{13}\times 2 hei hautanga kotahi.
\frac{18}{13}+\frac{9}{13}\left(-6\right)\sqrt{3}
Whakareatia te 9 ki te 2, ka 18.
\frac{18}{13}+\frac{9\left(-6\right)}{13}\sqrt{3}
Tuhia te \frac{9}{13}\left(-6\right) hei hautanga kotahi.
\frac{18}{13}+\frac{-54}{13}\sqrt{3}
Whakareatia te 9 ki te -6, ka -54.
\frac{18}{13}-\frac{54}{13}\sqrt{3}
Ka taea te hautanga \frac{-54}{13} te tuhi anō ko -\frac{54}{13} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}