Whakaoti mō a
a=\frac{3}{z+1}
z\neq -1
Whakaoti mō z
z=-1+\frac{3}{a}
a\neq 0
Tohaina
Kua tāruatia ki te papatopenga
-6=a\left(z+1\right)\left(-2\right)
Tangohia te 4 i te 2, ka -2.
-6=\left(az+a\right)\left(-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te z+1.
-6=-2az-2a
Whakamahia te āhuatanga tohatoha hei whakarea te az+a ki te -2.
-2az-2a=-6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(-2z-2\right)a=-6
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\frac{\left(-2z-2\right)a}{-2z-2}=-\frac{6}{-2z-2}
Whakawehea ngā taha e rua ki te -2z-2.
a=-\frac{6}{-2z-2}
Mā te whakawehe ki te -2z-2 ka wetekia te whakareanga ki te -2z-2.
a=\frac{3}{z+1}
Whakawehe -6 ki te -2z-2.
-6=a\left(z+1\right)\left(-2\right)
Tangohia te 4 i te 2, ka -2.
-6=\left(az+a\right)\left(-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te z+1.
-6=-2az-2a
Whakamahia te āhuatanga tohatoha hei whakarea te az+a ki te -2.
-2az-2a=-6
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-2az=-6+2a
Me tāpiri te 2a ki ngā taha e rua.
\left(-2a\right)z=2a-6
He hanga arowhānui tō te whārite.
\frac{\left(-2a\right)z}{-2a}=\frac{2a-6}{-2a}
Whakawehea ngā taha e rua ki te -2a.
z=\frac{2a-6}{-2a}
Mā te whakawehe ki te -2a ka wetekia te whakareanga ki te -2a.
z=-1+\frac{3}{a}
Whakawehe -6+2a ki te -2a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}