Aromātai
-56x^{5}
Kimi Pārōnaki e ai ki x
-280x^{4}
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
- 56 \cdot 3 x ^ { 8 - ( 4 - 1 ) } \cdot \frac { 1 } { 3 }
Tohaina
Kua tāruatia ki te papatopenga
-168x^{8-\left(4-1\right)}\times \frac{1}{3}
Whakareatia te -56 ki te 3, ka -168.
-168x^{8-3}\times \frac{1}{3}
Tangohia te 1 i te 4, ka 3.
-168x^{5}\times \frac{1}{3}
Tangohia te 3 i te 8, ka 5.
-56x^{5}
Whakareatia te -168 ki te \frac{1}{3}, ka -56.
\frac{\mathrm{d}}{\mathrm{d}x}(-168x^{8-\left(4-1\right)}\times \frac{1}{3})
Whakareatia te -56 ki te 3, ka -168.
\frac{\mathrm{d}}{\mathrm{d}x}(-168x^{8-3}\times \frac{1}{3})
Tangohia te 1 i te 4, ka 3.
\frac{\mathrm{d}}{\mathrm{d}x}(-168x^{5}\times \frac{1}{3})
Tangohia te 3 i te 8, ka 5.
\frac{\mathrm{d}}{\mathrm{d}x}(-56x^{5})
Whakareatia te -168 ki te \frac{1}{3}, ka -56.
5\left(-56\right)x^{5-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
-280x^{5-1}
Whakareatia 5 ki te -56.
-280x^{4}
Tango 1 mai i 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}