Whakaoti mō z
z=\frac{\sqrt{19}-2}{5}\approx 0.471779789
z=\frac{-\sqrt{19}-2}{5}\approx -1.271779789
Tohaina
Kua tāruatia ki te papatopenga
-5z^{2}-4z+3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-5\right)\times 3}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, -4 mō b, me 3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-\left(-4\right)±\sqrt{16-4\left(-5\right)\times 3}}{2\left(-5\right)}
Pūrua -4.
z=\frac{-\left(-4\right)±\sqrt{16+20\times 3}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
z=\frac{-\left(-4\right)±\sqrt{16+60}}{2\left(-5\right)}
Whakareatia 20 ki te 3.
z=\frac{-\left(-4\right)±\sqrt{76}}{2\left(-5\right)}
Tāpiri 16 ki te 60.
z=\frac{-\left(-4\right)±2\sqrt{19}}{2\left(-5\right)}
Tuhia te pūtakerua o te 76.
z=\frac{4±2\sqrt{19}}{2\left(-5\right)}
Ko te tauaro o -4 ko 4.
z=\frac{4±2\sqrt{19}}{-10}
Whakareatia 2 ki te -5.
z=\frac{2\sqrt{19}+4}{-10}
Nā, me whakaoti te whārite z=\frac{4±2\sqrt{19}}{-10} ina he tāpiri te ±. Tāpiri 4 ki te 2\sqrt{19}.
z=\frac{-\sqrt{19}-2}{5}
Whakawehe 4+2\sqrt{19} ki te -10.
z=\frac{4-2\sqrt{19}}{-10}
Nā, me whakaoti te whārite z=\frac{4±2\sqrt{19}}{-10} ina he tango te ±. Tango 2\sqrt{19} mai i 4.
z=\frac{\sqrt{19}-2}{5}
Whakawehe 4-2\sqrt{19} ki te -10.
z=\frac{-\sqrt{19}-2}{5} z=\frac{\sqrt{19}-2}{5}
Kua oti te whārite te whakatau.
-5z^{2}-4z+3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-5z^{2}-4z+3-3=-3
Me tango 3 mai i ngā taha e rua o te whārite.
-5z^{2}-4z=-3
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
\frac{-5z^{2}-4z}{-5}=-\frac{3}{-5}
Whakawehea ngā taha e rua ki te -5.
z^{2}+\left(-\frac{4}{-5}\right)z=-\frac{3}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
z^{2}+\frac{4}{5}z=-\frac{3}{-5}
Whakawehe -4 ki te -5.
z^{2}+\frac{4}{5}z=\frac{3}{5}
Whakawehe -3 ki te -5.
z^{2}+\frac{4}{5}z+\left(\frac{2}{5}\right)^{2}=\frac{3}{5}+\left(\frac{2}{5}\right)^{2}
Whakawehea te \frac{4}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{2}{5}. Nā, tāpiria te pūrua o te \frac{2}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
z^{2}+\frac{4}{5}z+\frac{4}{25}=\frac{3}{5}+\frac{4}{25}
Pūruatia \frac{2}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
z^{2}+\frac{4}{5}z+\frac{4}{25}=\frac{19}{25}
Tāpiri \frac{3}{5} ki te \frac{4}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(z+\frac{2}{5}\right)^{2}=\frac{19}{25}
Tauwehea z^{2}+\frac{4}{5}z+\frac{4}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{2}{5}\right)^{2}}=\sqrt{\frac{19}{25}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
z+\frac{2}{5}=\frac{\sqrt{19}}{5} z+\frac{2}{5}=-\frac{\sqrt{19}}{5}
Whakarūnātia.
z=\frac{\sqrt{19}-2}{5} z=\frac{-\sqrt{19}-2}{5}
Me tango \frac{2}{5} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}