Tauwehe
-\left(5y-2\right)\left(y+2\right)
Aromātai
-\left(5y-2\right)\left(y+2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-8 ab=-5\times 4=-20
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -5y^{2}+ay+by+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-20 2,-10 4,-5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
1-20=-19 2-10=-8 4-5=-1
Tātaihia te tapeke mō ia takirua.
a=2 b=-10
Ko te otinga te takirua ka hoatu i te tapeke -8.
\left(-5y^{2}+2y\right)+\left(-10y+4\right)
Tuhia anō te -5y^{2}-8y+4 hei \left(-5y^{2}+2y\right)+\left(-10y+4\right).
-y\left(5y-2\right)-2\left(5y-2\right)
Tauwehea te -y i te tuatahi me te -2 i te rōpū tuarua.
\left(5y-2\right)\left(-y-2\right)
Whakatauwehea atu te kīanga pātahi 5y-2 mā te whakamahi i te āhuatanga tātai tohatoha.
-5y^{2}-8y+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-5\right)\times 4}}{2\left(-5\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-\left(-8\right)±\sqrt{64-4\left(-5\right)\times 4}}{2\left(-5\right)}
Pūrua -8.
y=\frac{-\left(-8\right)±\sqrt{64+20\times 4}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
y=\frac{-\left(-8\right)±\sqrt{64+80}}{2\left(-5\right)}
Whakareatia 20 ki te 4.
y=\frac{-\left(-8\right)±\sqrt{144}}{2\left(-5\right)}
Tāpiri 64 ki te 80.
y=\frac{-\left(-8\right)±12}{2\left(-5\right)}
Tuhia te pūtakerua o te 144.
y=\frac{8±12}{2\left(-5\right)}
Ko te tauaro o -8 ko 8.
y=\frac{8±12}{-10}
Whakareatia 2 ki te -5.
y=\frac{20}{-10}
Nā, me whakaoti te whārite y=\frac{8±12}{-10} ina he tāpiri te ±. Tāpiri 8 ki te 12.
y=-2
Whakawehe 20 ki te -10.
y=-\frac{4}{-10}
Nā, me whakaoti te whārite y=\frac{8±12}{-10} ina he tango te ±. Tango 12 mai i 8.
y=\frac{2}{5}
Whakahekea te hautanga \frac{-4}{-10} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-5y^{2}-8y+4=-5\left(y-\left(-2\right)\right)\left(y-\frac{2}{5}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2 mō te x_{1} me te \frac{2}{5} mō te x_{2}.
-5y^{2}-8y+4=-5\left(y+2\right)\left(y-\frac{2}{5}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
-5y^{2}-8y+4=-5\left(y+2\right)\times \frac{-5y+2}{-5}
Tango \frac{2}{5} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
-5y^{2}-8y+4=\left(y+2\right)\left(-5y+2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 5 i roto i te -5 me te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}