Whakaoti mō x (complex solution)
\left\{\begin{matrix}\\x=-\frac{1}{10}=-0.1\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&y=-2\end{matrix}\right.
Whakaoti mō y (complex solution)
\left\{\begin{matrix}\\y=-2\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=-\frac{1}{10}\end{matrix}\right.
Whakaoti mō x
\left\{\begin{matrix}\\x=-\frac{1}{10}=-0.1\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&y=-2\end{matrix}\right.
Whakaoti mō y
\left\{\begin{matrix}\\y=-2\text{, }&\text{unconditionally}\\y\in \mathrm{R}\text{, }&x=-\frac{1}{10}\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
-10xy-20x-y=2
Whakamahia te āhuatanga tohatoha hei whakarea te -5x ki te 2y+4.
-10xy-20x=2+y
Me tāpiri te y ki ngā taha e rua.
\left(-10y-20\right)x=2+y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-10y-20\right)x=y+2
He hanga arowhānui tō te whārite.
\frac{\left(-10y-20\right)x}{-10y-20}=\frac{y+2}{-10y-20}
Whakawehea ngā taha e rua ki te -10y-20.
x=\frac{y+2}{-10y-20}
Mā te whakawehe ki te -10y-20 ka wetekia te whakareanga ki te -10y-20.
x=-\frac{1}{10}
Whakawehe 2+y ki te -10y-20.
-10xy-20x-y=2
Whakamahia te āhuatanga tohatoha hei whakarea te -5x ki te 2y+4.
-10xy-y=2+20x
Me tāpiri te 20x ki ngā taha e rua.
\left(-10x-1\right)y=2+20x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(-10x-1\right)y=20x+2
He hanga arowhānui tō te whārite.
\frac{\left(-10x-1\right)y}{-10x-1}=\frac{20x+2}{-10x-1}
Whakawehea ngā taha e rua ki te -1-10x.
y=\frac{20x+2}{-10x-1}
Mā te whakawehe ki te -1-10x ka wetekia te whakareanga ki te -1-10x.
y=-2
Whakawehe 2+20x ki te -1-10x.
-10xy-20x-y=2
Whakamahia te āhuatanga tohatoha hei whakarea te -5x ki te 2y+4.
-10xy-20x=2+y
Me tāpiri te y ki ngā taha e rua.
\left(-10y-20\right)x=2+y
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-10y-20\right)x=y+2
He hanga arowhānui tō te whārite.
\frac{\left(-10y-20\right)x}{-10y-20}=\frac{y+2}{-10y-20}
Whakawehea ngā taha e rua ki te -10y-20.
x=\frac{y+2}{-10y-20}
Mā te whakawehe ki te -10y-20 ka wetekia te whakareanga ki te -10y-20.
x=-\frac{1}{10}
Whakawehe 2+y ki te -10y-20.
-10xy-20x-y=2
Whakamahia te āhuatanga tohatoha hei whakarea te -5x ki te 2y+4.
-10xy-y=2+20x
Me tāpiri te 20x ki ngā taha e rua.
\left(-10x-1\right)y=2+20x
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\left(-10x-1\right)y=20x+2
He hanga arowhānui tō te whārite.
\frac{\left(-10x-1\right)y}{-10x-1}=\frac{20x+2}{-10x-1}
Whakawehea ngā taha e rua ki te -1-10x.
y=\frac{20x+2}{-10x-1}
Mā te whakawehe ki te -1-10x ka wetekia te whakareanga ki te -1-10x.
y=-2
Whakawehe 2+20x ki te -1-10x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}