Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5x^{2}-2-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
-6x^{2}-2=2x
Pahekotia te -5x^{2} me -x^{2}, ka -6x^{2}.
-6x^{2}-2-2x=0
Tangohia te 2x mai i ngā taha e rua.
-6x^{2}-2x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -6 mō a, -2 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-6\right)\left(-2\right)}}{2\left(-6\right)}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+24\left(-2\right)}}{2\left(-6\right)}
Whakareatia -4 ki te -6.
x=\frac{-\left(-2\right)±\sqrt{4-48}}{2\left(-6\right)}
Whakareatia 24 ki te -2.
x=\frac{-\left(-2\right)±\sqrt{-44}}{2\left(-6\right)}
Tāpiri 4 ki te -48.
x=\frac{-\left(-2\right)±2\sqrt{11}i}{2\left(-6\right)}
Tuhia te pūtakerua o te -44.
x=\frac{2±2\sqrt{11}i}{2\left(-6\right)}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{11}i}{-12}
Whakareatia 2 ki te -6.
x=\frac{2+2\sqrt{11}i}{-12}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{11}i}{-12} ina he tāpiri te ±. Tāpiri 2 ki te 2i\sqrt{11}.
x=\frac{-\sqrt{11}i-1}{6}
Whakawehe 2+2i\sqrt{11} ki te -12.
x=\frac{-2\sqrt{11}i+2}{-12}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{11}i}{-12} ina he tango te ±. Tango 2i\sqrt{11} mai i 2.
x=\frac{-1+\sqrt{11}i}{6}
Whakawehe 2-2i\sqrt{11} ki te -12.
x=\frac{-\sqrt{11}i-1}{6} x=\frac{-1+\sqrt{11}i}{6}
Kua oti te whārite te whakatau.
-5x^{2}-2-x^{2}=2x
Tangohia te x^{2} mai i ngā taha e rua.
-6x^{2}-2=2x
Pahekotia te -5x^{2} me -x^{2}, ka -6x^{2}.
-6x^{2}-2-2x=0
Tangohia te 2x mai i ngā taha e rua.
-6x^{2}-2x=2
Me tāpiri te 2 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{-6x^{2}-2x}{-6}=\frac{2}{-6}
Whakawehea ngā taha e rua ki te -6.
x^{2}+\left(-\frac{2}{-6}\right)x=\frac{2}{-6}
Mā te whakawehe ki te -6 ka wetekia te whakareanga ki te -6.
x^{2}+\frac{1}{3}x=\frac{2}{-6}
Whakahekea te hautanga \frac{-2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{3}x=-\frac{1}{3}
Whakahekea te hautanga \frac{2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=-\frac{1}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{1}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{3}x+\frac{1}{36}=-\frac{11}{36}
Tāpiri -\frac{1}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{6}\right)^{2}=-\frac{11}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{-\frac{11}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{\sqrt{11}i}{6} x+\frac{1}{6}=-\frac{\sqrt{11}i}{6}
Whakarūnātia.
x=\frac{-1+\sqrt{11}i}{6} x=\frac{-\sqrt{11}i-1}{6}
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.