Whakaoti mō x
x=0.1
x=0.7
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x^{2}+4x=0.35
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-5x^{2}+4x-0.35=0.35-0.35
Me tango 0.35 mai i ngā taha e rua o te whārite.
-5x^{2}+4x-0.35=0
Mā te tango i te 0.35 i a ia ake anō ka toe ko te 0.
x=\frac{-4±\sqrt{4^{2}-4\left(-5\right)\left(-0.35\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 4 mō b, me -0.35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-5\right)\left(-0.35\right)}}{2\left(-5\right)}
Pūrua 4.
x=\frac{-4±\sqrt{16+20\left(-0.35\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{-4±\sqrt{16-7}}{2\left(-5\right)}
Whakareatia 20 ki te -0.35.
x=\frac{-4±\sqrt{9}}{2\left(-5\right)}
Tāpiri 16 ki te -7.
x=\frac{-4±3}{2\left(-5\right)}
Tuhia te pūtakerua o te 9.
x=\frac{-4±3}{-10}
Whakareatia 2 ki te -5.
x=-\frac{1}{-10}
Nā, me whakaoti te whārite x=\frac{-4±3}{-10} ina he tāpiri te ±. Tāpiri -4 ki te 3.
x=\frac{1}{10}
Whakawehe -1 ki te -10.
x=-\frac{7}{-10}
Nā, me whakaoti te whārite x=\frac{-4±3}{-10} ina he tango te ±. Tango 3 mai i -4.
x=\frac{7}{10}
Whakawehe -7 ki te -10.
x=\frac{1}{10} x=\frac{7}{10}
Kua oti te whārite te whakatau.
-5x^{2}+4x=0.35
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-5x^{2}+4x}{-5}=\frac{0.35}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}+\frac{4}{-5}x=\frac{0.35}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x^{2}-\frac{4}{5}x=\frac{0.35}{-5}
Whakawehe 4 ki te -5.
x^{2}-\frac{4}{5}x=-0.07
Whakawehe 0.35 ki te -5.
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=-0.07+\left(-\frac{2}{5}\right)^{2}
Whakawehea te -\frac{4}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{2}{5}. Nā, tāpiria te pūrua o te -\frac{2}{5} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{4}{5}x+\frac{4}{25}=-0.07+\frac{4}{25}
Pūruatia -\frac{2}{5} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{9}{100}
Tāpiri -0.07 ki te \frac{4}{25} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{2}{5}\right)^{2}=\frac{9}{100}
Tauwehea x^{2}-\frac{4}{5}x+\frac{4}{25}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{9}{100}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{2}{5}=\frac{3}{10} x-\frac{2}{5}=-\frac{3}{10}
Whakarūnātia.
x=\frac{7}{10} x=\frac{1}{10}
Me tāpiri \frac{2}{5} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}