Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5x^{-4}x^{6}=5
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{6}.
-5x^{2}=5
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -4 me te 6 kia riro ai te 2.
x^{2}=\frac{5}{-5}
Whakawehea ngā taha e rua ki te -5.
x^{2}=-1
Whakawehea te 5 ki te -5, kia riro ko -1.
x=i x=-i
Kua oti te whārite te whakatau.
-5x^{-4}x^{6}=5
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x^{6}.
-5x^{2}=5
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -4 me te 6 kia riro ai te 2.
-5x^{2}-5=0
Tangohia te 5 mai i ngā taha e rua.
x=\frac{0±\sqrt{0^{2}-4\left(-5\right)\left(-5\right)}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 0 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-5\right)\left(-5\right)}}{2\left(-5\right)}
Pūrua 0.
x=\frac{0±\sqrt{20\left(-5\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
x=\frac{0±\sqrt{-100}}{2\left(-5\right)}
Whakareatia 20 ki te -5.
x=\frac{0±10i}{2\left(-5\right)}
Tuhia te pūtakerua o te -100.
x=\frac{0±10i}{-10}
Whakareatia 2 ki te -5.
x=-i
Nā, me whakaoti te whārite x=\frac{0±10i}{-10} ina he tāpiri te ±.
x=i
Nā, me whakaoti te whārite x=\frac{0±10i}{-10} ina he tango te ±.
x=-i x=i
Kua oti te whārite te whakatau.