Whakaoti mō x
x=\frac{13-3y}{5}
Whakaoti mō y
y=\frac{13-5x}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x=3y-13
He hanga arowhānui tō te whārite.
\frac{-5x}{-5}=\frac{3y-13}{-5}
Whakawehea ngā taha e rua ki te -5.
x=\frac{3y-13}{-5}
Mā te whakawehe ki te -5 ka wetekia te whakareanga ki te -5.
x=\frac{13-3y}{5}
Whakawehe 3y-13 ki te -5.
3y-13=-5x
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
3y=-5x+13
Me tāpiri te 13 ki ngā taha e rua.
3y=13-5x
He hanga arowhānui tō te whārite.
\frac{3y}{3}=\frac{13-5x}{3}
Whakawehea ngā taha e rua ki te 3.
y=\frac{13-5x}{3}
Mā te whakawehe ki te 3 ka wetekia te whakareanga ki te 3.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}