Whakaoti mō x
x = -\frac{3}{10} = -0.3
Whakaoti mō y
y = \frac{3}{10} = 0.3
Graph
Tohaina
Kua tāruatia ki te papatopenga
-5x+10y=3+5x
Tangohia te 12 i te 15, ka 3.
-5x+10y-5x=3
Tangohia te 5x mai i ngā taha e rua.
-10x+10y=3
Pahekotia te -5x me -5x, ka -10x.
-10x=3-10y
Tangohia te 10y mai i ngā taha e rua.
\frac{-10x}{-10}=\frac{3-10y}{-10}
Whakawehea ngā taha e rua ki te -10.
x=\frac{3-10y}{-10}
Mā te whakawehe ki te -10 ka wetekia te whakareanga ki te -10.
x=y-\frac{3}{10}
Whakawehe 3-10y ki te -10.
-5x+10y=3+5x
Tangohia te 12 i te 15, ka 3.
10y=3+5x+5x
Me tāpiri te 5x ki ngā taha e rua.
10y=3+10x
Pahekotia te 5x me 5x, ka 10x.
10y=10x+3
He hanga arowhānui tō te whārite.
\frac{10y}{10}=\frac{10x+3}{10}
Whakawehea ngā taha e rua ki te 10.
y=\frac{10x+3}{10}
Mā te whakawehe ki te 10 ka wetekia te whakareanga ki te 10.
y=x+\frac{3}{10}
Whakawehe 3+10x ki te 10.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}