Tauwehe
5\left(3-u\right)\left(u-6\right)
Aromātai
5\left(3-u\right)\left(u-6\right)
Tohaina
Kua tāruatia ki te papatopenga
5\left(-u^{2}+9u-18\right)
Tauwehea te 5.
a+b=9 ab=-\left(-18\right)=18
Whakaarohia te -u^{2}+9u-18. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -u^{2}+au+bu-18. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,18 2,9 3,6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 18.
1+18=19 2+9=11 3+6=9
Tātaihia te tapeke mō ia takirua.
a=6 b=3
Ko te otinga te takirua ka hoatu i te tapeke 9.
\left(-u^{2}+6u\right)+\left(3u-18\right)
Tuhia anō te -u^{2}+9u-18 hei \left(-u^{2}+6u\right)+\left(3u-18\right).
-u\left(u-6\right)+3\left(u-6\right)
Tauwehea te -u i te tuatahi me te 3 i te rōpū tuarua.
\left(u-6\right)\left(-u+3\right)
Whakatauwehea atu te kīanga pātahi u-6 mā te whakamahi i te āhuatanga tātai tohatoha.
5\left(u-6\right)\left(-u+3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-5u^{2}+45u-90=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
u=\frac{-45±\sqrt{45^{2}-4\left(-5\right)\left(-90\right)}}{2\left(-5\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-45±\sqrt{2025-4\left(-5\right)\left(-90\right)}}{2\left(-5\right)}
Pūrua 45.
u=\frac{-45±\sqrt{2025+20\left(-90\right)}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
u=\frac{-45±\sqrt{2025-1800}}{2\left(-5\right)}
Whakareatia 20 ki te -90.
u=\frac{-45±\sqrt{225}}{2\left(-5\right)}
Tāpiri 2025 ki te -1800.
u=\frac{-45±15}{2\left(-5\right)}
Tuhia te pūtakerua o te 225.
u=\frac{-45±15}{-10}
Whakareatia 2 ki te -5.
u=-\frac{30}{-10}
Nā, me whakaoti te whārite u=\frac{-45±15}{-10} ina he tāpiri te ±. Tāpiri -45 ki te 15.
u=3
Whakawehe -30 ki te -10.
u=-\frac{60}{-10}
Nā, me whakaoti te whārite u=\frac{-45±15}{-10} ina he tango te ±. Tango 15 mai i -45.
u=6
Whakawehe -60 ki te -10.
-5u^{2}+45u-90=-5\left(u-3\right)\left(u-6\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te 6 mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}