Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-5p^{2}=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
p^{2}=\frac{-4}{-5}
Whakawehea ngā taha e rua ki te -5.
p^{2}=\frac{4}{5}
Ka taea te hautanga \frac{-4}{-5} te whakamāmā ki te \frac{4}{5} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
p=\frac{2\sqrt{5}}{5} p=-\frac{2\sqrt{5}}{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-5p^{2}+4=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
p=\frac{0±\sqrt{0^{2}-4\left(-5\right)\times 4}}{2\left(-5\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -5 mō a, 0 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{0±\sqrt{-4\left(-5\right)\times 4}}{2\left(-5\right)}
Pūrua 0.
p=\frac{0±\sqrt{20\times 4}}{2\left(-5\right)}
Whakareatia -4 ki te -5.
p=\frac{0±\sqrt{80}}{2\left(-5\right)}
Whakareatia 20 ki te 4.
p=\frac{0±4\sqrt{5}}{2\left(-5\right)}
Tuhia te pūtakerua o te 80.
p=\frac{0±4\sqrt{5}}{-10}
Whakareatia 2 ki te -5.
p=-\frac{2\sqrt{5}}{5}
Nā, me whakaoti te whārite p=\frac{0±4\sqrt{5}}{-10} ina he tāpiri te ±.
p=\frac{2\sqrt{5}}{5}
Nā, me whakaoti te whārite p=\frac{0±4\sqrt{5}}{-10} ina he tango te ±.
p=-\frac{2\sqrt{5}}{5} p=\frac{2\sqrt{5}}{5}
Kua oti te whārite te whakatau.