Aromātai
-32
Tauwehe
-32
Tohaina
Kua tāruatia ki te papatopenga
-5-\left(\frac{81}{\sqrt[3]{27}}-\frac{128}{\left(-4\right)^{3}}\right)+\sqrt[5]{32}
Tātaihia te -3 mā te pū o 4, kia riro ko 81.
-5-\left(\frac{81}{3}-\frac{128}{\left(-4\right)^{3}}\right)+\sqrt[5]{32}
Tātaitia te \sqrt[3]{27} kia tae ki 3.
-5-\left(27-\frac{128}{\left(-4\right)^{3}}\right)+\sqrt[5]{32}
Whakawehea te 81 ki te 3, kia riro ko 27.
-5-\left(27-\frac{128}{-64}\right)+\sqrt[5]{32}
Tātaihia te -4 mā te pū o 3, kia riro ko -64.
-5-\left(27-\left(-2\right)\right)+\sqrt[5]{32}
Whakawehea te 128 ki te -64, kia riro ko -2.
-5-\left(27+2\right)+\sqrt[5]{32}
Ko te tauaro o -2 ko 2.
-5-29+\sqrt[5]{32}
Tāpirihia te 27 ki te 2, ka 29.
-34+\sqrt[5]{32}
Tangohia te 29 i te -5, ka -34.
-34+2
Tātaitia te \sqrt[5]{32} kia tae ki 2.
-32
Tāpirihia te -34 ki te 2, ka -32.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}