Aromātai
30\sqrt{5}\approx 67.082039325
Tohaina
Kua tāruatia ki te papatopenga
-5\times \frac{\sqrt{8}}{\sqrt{27}}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{8}{27}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{8}}{\sqrt{27}}.
-5\times \frac{2\sqrt{2}}{\sqrt{27}}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Tauwehea te 8=2^{2}\times 2. Tuhia anō te pūtake rua o te hua \sqrt{2^{2}\times 2} hei hua o ngā pūtake rua \sqrt{2^{2}}\sqrt{2}. Tuhia te pūtakerua o te 2^{2}.
-5\times \frac{2\sqrt{2}}{3\sqrt{3}}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Tauwehea te 27=3^{2}\times 3. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 3} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{3}. Tuhia te pūtakerua o te 3^{2}.
-5\times \frac{2\sqrt{2}\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Whakangāwaritia te tauraro o \frac{2\sqrt{2}}{3\sqrt{3}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{3}.
-5\times \frac{2\sqrt{2}\sqrt{3}}{3\times 3}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Ko te pūrua o \sqrt{3} ko 3.
-5\times \frac{2\sqrt{6}}{3\times 3}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Hei whakarea \sqrt{2} me \sqrt{3}, whakareatia ngā tau i raro i te pūtake rua.
-5\times \frac{2\sqrt{6}}{9}\sqrt{\frac{4+1}{4}}\left(-3\right)\sqrt{54}
Whakareatia te 3 ki te 3, ka 9.
-5\times \frac{2\sqrt{6}}{9}\sqrt{\frac{5}{4}}\left(-3\right)\sqrt{54}
Tāpirihia te 4 ki te 1, ka 5.
-5\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{\sqrt{4}}\left(-3\right)\sqrt{54}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{5}{4}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{5}}{\sqrt{4}}.
-5\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{2}\left(-3\right)\sqrt{54}
Tātaitia te pūtakerua o 4 kia tae ki 2.
15\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{2}\sqrt{54}
Whakareatia te -5 ki te -3, ka 15.
15\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{2}\times 3\sqrt{6}
Tauwehea te 54=3^{2}\times 6. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 6} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{6}. Tuhia te pūtakerua o te 3^{2}.
45\times \frac{2\sqrt{6}}{9}\times \frac{\sqrt{5}}{2}\sqrt{6}
Whakareatia te 15 ki te 3, ka 45.
5\times 2\sqrt{6}\times \frac{\sqrt{5}}{2}\sqrt{6}
Whakakorea atu te tauwehe pūnoa nui rawa 9 i roto i te 45 me te 9.
\frac{5\times 2\sqrt{6}\sqrt{5}}{2}\sqrt{6}
Tuhia te 5\times 2\sqrt{6}\times \frac{\sqrt{5}}{2} hei hautanga kotahi.
5\sqrt{6}\sqrt{5}\sqrt{6}
Me whakakore te 2 me te 2.
5\times 6\sqrt{5}
Whakareatia te \sqrt{6} ki te \sqrt{6}, ka 6.
30\sqrt{5}
Whakareatia te 5 ki te 6, ka 30.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}