Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-49w^{2}=-9
Tangohia te 9 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
w^{2}=\frac{-9}{-49}
Whakawehea ngā taha e rua ki te -49.
w^{2}=\frac{9}{49}
Ka taea te hautanga \frac{-9}{-49} te whakamāmā ki te \frac{9}{49} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
w=\frac{3}{7} w=-\frac{3}{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-49w^{2}+9=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
w=\frac{0±\sqrt{0^{2}-4\left(-49\right)\times 9}}{2\left(-49\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -49 mō a, 0 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\left(-49\right)\times 9}}{2\left(-49\right)}
Pūrua 0.
w=\frac{0±\sqrt{196\times 9}}{2\left(-49\right)}
Whakareatia -4 ki te -49.
w=\frac{0±\sqrt{1764}}{2\left(-49\right)}
Whakareatia 196 ki te 9.
w=\frac{0±42}{2\left(-49\right)}
Tuhia te pūtakerua o te 1764.
w=\frac{0±42}{-98}
Whakareatia 2 ki te -49.
w=-\frac{3}{7}
Nā, me whakaoti te whārite w=\frac{0±42}{-98} ina he tāpiri te ±. Whakahekea te hautanga \frac{42}{-98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
w=\frac{3}{7}
Nā, me whakaoti te whārite w=\frac{0±42}{-98} ina he tango te ±. Whakahekea te hautanga \frac{-42}{-98} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 14.
w=-\frac{3}{7} w=\frac{3}{7}
Kua oti te whārite te whakatau.