Whakaoti mō t
t=\frac{\sqrt{149}}{7}+1\approx 2.743793659
t=-\frac{\sqrt{149}}{7}+1\approx -0.743793659
Tohaina
Kua tāruatia ki te papatopenga
-49t^{2}+98t+100=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-98±\sqrt{98^{2}-4\left(-49\right)\times 100}}{2\left(-49\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -49 mō a, 98 mō b, me 100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-98±\sqrt{9604-4\left(-49\right)\times 100}}{2\left(-49\right)}
Pūrua 98.
t=\frac{-98±\sqrt{9604+196\times 100}}{2\left(-49\right)}
Whakareatia -4 ki te -49.
t=\frac{-98±\sqrt{9604+19600}}{2\left(-49\right)}
Whakareatia 196 ki te 100.
t=\frac{-98±\sqrt{29204}}{2\left(-49\right)}
Tāpiri 9604 ki te 19600.
t=\frac{-98±14\sqrt{149}}{2\left(-49\right)}
Tuhia te pūtakerua o te 29204.
t=\frac{-98±14\sqrt{149}}{-98}
Whakareatia 2 ki te -49.
t=\frac{14\sqrt{149}-98}{-98}
Nā, me whakaoti te whārite t=\frac{-98±14\sqrt{149}}{-98} ina he tāpiri te ±. Tāpiri -98 ki te 14\sqrt{149}.
t=-\frac{\sqrt{149}}{7}+1
Whakawehe -98+14\sqrt{149} ki te -98.
t=\frac{-14\sqrt{149}-98}{-98}
Nā, me whakaoti te whārite t=\frac{-98±14\sqrt{149}}{-98} ina he tango te ±. Tango 14\sqrt{149} mai i -98.
t=\frac{\sqrt{149}}{7}+1
Whakawehe -98-14\sqrt{149} ki te -98.
t=-\frac{\sqrt{149}}{7}+1 t=\frac{\sqrt{149}}{7}+1
Kua oti te whārite te whakatau.
-49t^{2}+98t+100=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-49t^{2}+98t+100-100=-100
Me tango 100 mai i ngā taha e rua o te whārite.
-49t^{2}+98t=-100
Mā te tango i te 100 i a ia ake anō ka toe ko te 0.
\frac{-49t^{2}+98t}{-49}=-\frac{100}{-49}
Whakawehea ngā taha e rua ki te -49.
t^{2}+\frac{98}{-49}t=-\frac{100}{-49}
Mā te whakawehe ki te -49 ka wetekia te whakareanga ki te -49.
t^{2}-2t=-\frac{100}{-49}
Whakawehe 98 ki te -49.
t^{2}-2t=\frac{100}{49}
Whakawehe -100 ki te -49.
t^{2}-2t+1=\frac{100}{49}+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}-2t+1=\frac{149}{49}
Tāpiri \frac{100}{49} ki te 1.
\left(t-1\right)^{2}=\frac{149}{49}
Tauwehea t^{2}-2t+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-1\right)^{2}}=\sqrt{\frac{149}{49}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t-1=\frac{\sqrt{149}}{7} t-1=-\frac{\sqrt{149}}{7}
Whakarūnātia.
t=\frac{\sqrt{149}}{7}+1 t=-\frac{\sqrt{149}}{7}+1
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}