Tīpoka ki ngā ihirangi matua
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-48\times \frac{2}{11}=2\times 9\left(n-1\right)-2
Me whakarea ngā taha e rua ki te \frac{2}{11}, te tau utu o \frac{11}{2}.
\frac{-48\times 2}{11}=2\times 9\left(n-1\right)-2
Tuhia te -48\times \frac{2}{11} hei hautanga kotahi.
\frac{-96}{11}=2\times 9\left(n-1\right)-2
Whakareatia te -48 ki te 2, ka -96.
-\frac{96}{11}=2\times 9\left(n-1\right)-2
Ka taea te hautanga \frac{-96}{11} te tuhi anō ko -\frac{96}{11} mā te tango i te tohu tōraro.
-\frac{96}{11}=18\left(n-1\right)-2
Whakareatia te 2 ki te 9, ka 18.
-\frac{96}{11}=18n-18-2
Whakamahia te āhuatanga tohatoha hei whakarea te 18 ki te n-1.
-\frac{96}{11}=18n-20
Tangohia te 2 i te -18, ka -20.
18n-20=-\frac{96}{11}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
18n=-\frac{96}{11}+20
Me tāpiri te 20 ki ngā taha e rua.
18n=-\frac{96}{11}+\frac{220}{11}
Me tahuri te 20 ki te hautau \frac{220}{11}.
18n=\frac{-96+220}{11}
Tā te mea he rite te tauraro o -\frac{96}{11} me \frac{220}{11}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
18n=\frac{124}{11}
Tāpirihia te -96 ki te 220, ka 124.
n=\frac{\frac{124}{11}}{18}
Whakawehea ngā taha e rua ki te 18.
n=\frac{124}{11\times 18}
Tuhia te \frac{\frac{124}{11}}{18} hei hautanga kotahi.
n=\frac{124}{198}
Whakareatia te 11 ki te 18, ka 198.
n=\frac{62}{99}
Whakahekea te hautanga \frac{124}{198} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.