Tīpoka ki ngā ihirangi matua
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

t^{2}-5t-40=0
Whakakapia te t mō te b^{2}.
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\left(-40\right)}}{2}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 1 mō te a, te -5 mō te b, me te -40 mō te c i te ture pūrua.
t=\frac{5±\sqrt{185}}{2}
Mahia ngā tātaitai.
t=\frac{\sqrt{185}+5}{2} t=\frac{5-\sqrt{185}}{2}
Whakaotia te whārite t=\frac{5±\sqrt{185}}{2} ina he tōrunga te ±, ina he tōraro te ±.
b=\frac{\sqrt{2\sqrt{185}+10}}{2} b=-\frac{\sqrt{2\sqrt{185}+10}}{2}
I te mea ko b=t^{2}, ka riro ngā otinga mā te arotake i te b=±\sqrt{t} mō t tōrunga.