Whakaoti mō b
b = \frac{\sqrt{105} + 11}{4} \approx 5.311737691
b=\frac{11-\sqrt{105}}{4}\approx 0.188262309
Tohaina
Kua tāruatia ki te papatopenga
-4b^{2}+22b-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-22±\sqrt{22^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 22 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-22±\sqrt{484-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Pūrua 22.
b=\frac{-22±\sqrt{484+16\left(-4\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
b=\frac{-22±\sqrt{484-64}}{2\left(-4\right)}
Whakareatia 16 ki te -4.
b=\frac{-22±\sqrt{420}}{2\left(-4\right)}
Tāpiri 484 ki te -64.
b=\frac{-22±2\sqrt{105}}{2\left(-4\right)}
Tuhia te pūtakerua o te 420.
b=\frac{-22±2\sqrt{105}}{-8}
Whakareatia 2 ki te -4.
b=\frac{2\sqrt{105}-22}{-8}
Nā, me whakaoti te whārite b=\frac{-22±2\sqrt{105}}{-8} ina he tāpiri te ±. Tāpiri -22 ki te 2\sqrt{105}.
b=\frac{11-\sqrt{105}}{4}
Whakawehe -22+2\sqrt{105} ki te -8.
b=\frac{-2\sqrt{105}-22}{-8}
Nā, me whakaoti te whārite b=\frac{-22±2\sqrt{105}}{-8} ina he tango te ±. Tango 2\sqrt{105} mai i -22.
b=\frac{\sqrt{105}+11}{4}
Whakawehe -22-2\sqrt{105} ki te -8.
b=\frac{11-\sqrt{105}}{4} b=\frac{\sqrt{105}+11}{4}
Kua oti te whārite te whakatau.
-4b^{2}+22b-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-4b^{2}+22b-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
-4b^{2}+22b=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
-4b^{2}+22b=4
Tango -4 mai i 0.
\frac{-4b^{2}+22b}{-4}=\frac{4}{-4}
Whakawehea ngā taha e rua ki te -4.
b^{2}+\frac{22}{-4}b=\frac{4}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
b^{2}-\frac{11}{2}b=\frac{4}{-4}
Whakahekea te hautanga \frac{22}{-4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
b^{2}-\frac{11}{2}b=-1
Whakawehe 4 ki te -4.
b^{2}-\frac{11}{2}b+\left(-\frac{11}{4}\right)^{2}=-1+\left(-\frac{11}{4}\right)^{2}
Whakawehea te -\frac{11}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{11}{4}. Nā, tāpiria te pūrua o te -\frac{11}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}-\frac{11}{2}b+\frac{121}{16}=-1+\frac{121}{16}
Pūruatia -\frac{11}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
b^{2}-\frac{11}{2}b+\frac{121}{16}=\frac{105}{16}
Tāpiri -1 ki te \frac{121}{16}.
\left(b-\frac{11}{4}\right)^{2}=\frac{105}{16}
Tauwehea b^{2}-\frac{11}{2}b+\frac{121}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{11}{4}\right)^{2}}=\sqrt{\frac{105}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b-\frac{11}{4}=\frac{\sqrt{105}}{4} b-\frac{11}{4}=-\frac{\sqrt{105}}{4}
Whakarūnātia.
b=\frac{\sqrt{105}+11}{4} b=\frac{11-\sqrt{105}}{4}
Me tāpiri \frac{11}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}