Whakaoti mō a
a=\frac{\sqrt{41}-5}{8}\approx 0.17539053
a=\frac{-\sqrt{41}-5}{8}\approx -1.42539053
Tohaina
Kua tāruatia ki te papatopenga
-4a^{2}-5a+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
a=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-4\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, -5 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-5\right)±\sqrt{25-4\left(-4\right)}}{2\left(-4\right)}
Pūrua -5.
a=\frac{-\left(-5\right)±\sqrt{25+16}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
a=\frac{-\left(-5\right)±\sqrt{41}}{2\left(-4\right)}
Tāpiri 25 ki te 16.
a=\frac{5±\sqrt{41}}{2\left(-4\right)}
Ko te tauaro o -5 ko 5.
a=\frac{5±\sqrt{41}}{-8}
Whakareatia 2 ki te -4.
a=\frac{\sqrt{41}+5}{-8}
Nā, me whakaoti te whārite a=\frac{5±\sqrt{41}}{-8} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{41}.
a=\frac{-\sqrt{41}-5}{8}
Whakawehe 5+\sqrt{41} ki te -8.
a=\frac{5-\sqrt{41}}{-8}
Nā, me whakaoti te whārite a=\frac{5±\sqrt{41}}{-8} ina he tango te ±. Tango \sqrt{41} mai i 5.
a=\frac{\sqrt{41}-5}{8}
Whakawehe 5-\sqrt{41} ki te -8.
a=\frac{-\sqrt{41}-5}{8} a=\frac{\sqrt{41}-5}{8}
Kua oti te whārite te whakatau.
-4a^{2}-5a+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-4a^{2}-5a+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
-4a^{2}-5a=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{-4a^{2}-5a}{-4}=-\frac{1}{-4}
Whakawehea ngā taha e rua ki te -4.
a^{2}+\left(-\frac{5}{-4}\right)a=-\frac{1}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
a^{2}+\frac{5}{4}a=-\frac{1}{-4}
Whakawehe -5 ki te -4.
a^{2}+\frac{5}{4}a=\frac{1}{4}
Whakawehe -1 ki te -4.
a^{2}+\frac{5}{4}a+\left(\frac{5}{8}\right)^{2}=\frac{1}{4}+\left(\frac{5}{8}\right)^{2}
Whakawehea te \frac{5}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{8}. Nā, tāpiria te pūrua o te \frac{5}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
a^{2}+\frac{5}{4}a+\frac{25}{64}=\frac{1}{4}+\frac{25}{64}
Pūruatia \frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
a^{2}+\frac{5}{4}a+\frac{25}{64}=\frac{41}{64}
Tāpiri \frac{1}{4} ki te \frac{25}{64} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(a+\frac{5}{8}\right)^{2}=\frac{41}{64}
Tauwehea a^{2}+\frac{5}{4}a+\frac{25}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{5}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
a+\frac{5}{8}=\frac{\sqrt{41}}{8} a+\frac{5}{8}=-\frac{\sqrt{41}}{8}
Whakarūnātia.
a=\frac{\sqrt{41}-5}{8} a=\frac{-\sqrt{41}-5}{8}
Me tango \frac{5}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}