Whakaoti mō B
B=\frac{1}{2}=0.5
Tohaina
Kua tāruatia ki te papatopenga
a+b=4 ab=-4\left(-1\right)=4
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -4B^{2}+aB+bB-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,4 2,2
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 4.
1+4=5 2+2=4
Tātaihia te tapeke mō ia takirua.
a=2 b=2
Ko te otinga te takirua ka hoatu i te tapeke 4.
\left(-4B^{2}+2B\right)+\left(2B-1\right)
Tuhia anō te -4B^{2}+4B-1 hei \left(-4B^{2}+2B\right)+\left(2B-1\right).
-2B\left(2B-1\right)+2B-1
Whakatauwehea atu -2B i te -4B^{2}+2B.
\left(2B-1\right)\left(-2B+1\right)
Whakatauwehea atu te kīanga pātahi 2B-1 mā te whakamahi i te āhuatanga tātai tohatoha.
B=\frac{1}{2} B=\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te 2B-1=0 me te -2B+1=0.
-4B^{2}+4B-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
B=\frac{-4±\sqrt{4^{2}-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -4 mō a, 4 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
B=\frac{-4±\sqrt{16-4\left(-4\right)\left(-1\right)}}{2\left(-4\right)}
Pūrua 4.
B=\frac{-4±\sqrt{16+16\left(-1\right)}}{2\left(-4\right)}
Whakareatia -4 ki te -4.
B=\frac{-4±\sqrt{16-16}}{2\left(-4\right)}
Whakareatia 16 ki te -1.
B=\frac{-4±\sqrt{0}}{2\left(-4\right)}
Tāpiri 16 ki te -16.
B=-\frac{4}{2\left(-4\right)}
Tuhia te pūtakerua o te 0.
B=-\frac{4}{-8}
Whakareatia 2 ki te -4.
B=\frac{1}{2}
Whakahekea te hautanga \frac{-4}{-8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
-4B^{2}+4B-1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-4B^{2}+4B-1-\left(-1\right)=-\left(-1\right)
Me tāpiri 1 ki ngā taha e rua o te whārite.
-4B^{2}+4B=-\left(-1\right)
Mā te tango i te -1 i a ia ake anō ka toe ko te 0.
-4B^{2}+4B=1
Tango -1 mai i 0.
\frac{-4B^{2}+4B}{-4}=\frac{1}{-4}
Whakawehea ngā taha e rua ki te -4.
B^{2}+\frac{4}{-4}B=\frac{1}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
B^{2}-B=\frac{1}{-4}
Whakawehe 4 ki te -4.
B^{2}-B=-\frac{1}{4}
Whakawehe 1 ki te -4.
B^{2}-B+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{4}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
B^{2}-B+\frac{1}{4}=\frac{-1+1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
B^{2}-B+\frac{1}{4}=0
Tāpiri -\frac{1}{4} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(B-\frac{1}{2}\right)^{2}=0
Tauwehea B^{2}-B+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(B-\frac{1}{2}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
B-\frac{1}{2}=0 B-\frac{1}{2}=0
Whakarūnātia.
B=\frac{1}{2} B=\frac{1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
B=\frac{1}{2}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}