Aromātai
11
Tauwehe
11
Pātaitai
Arithmetic
5 raruraru e ōrite ana ki:
- 4 - 2 \cdot ( - 5 ) - 6 : 2 - 4 \cdot 2 - 5 + 7 \cdot 3
Tohaina
Kua tāruatia ki te papatopenga
-4-\left(-10\right)-\frac{6}{2}-4\times 2-5+7\times 3
Whakareatia te 2 ki te -5, ka -10.
-4+10-\frac{6}{2}-4\times 2-5+7\times 3
Ko te tauaro o -10 ko 10.
6-\frac{6}{2}-4\times 2-5+7\times 3
Tāpirihia te -4 ki te 10, ka 6.
6-3-4\times 2-5+7\times 3
Whakawehea te 6 ki te 2, kia riro ko 3.
3-4\times 2-5+7\times 3
Tangohia te 3 i te 6, ka 3.
3-8-5+7\times 3
Whakareatia te 4 ki te 2, ka 8.
-5-5+7\times 3
Tangohia te 8 i te 3, ka -5.
-10+7\times 3
Tangohia te 5 i te -5, ka -10.
-10+21
Whakareatia te 7 ki te 3, ka 21.
11
Tāpirihia te -10 ki te 21, ka 11.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}