Aromātai
-\frac{11}{6}\approx -1.833333333
Tauwehe
-\frac{11}{6} = -1\frac{5}{6} = -1.8333333333333333
Tohaina
Kua tāruatia ki te papatopenga
-\frac{16}{4}-\frac{3}{4}+\frac{1}{2}\times 6+\frac{5}{8}\times \frac{-2}{15}
Me tahuri te -4 ki te hautau -\frac{16}{4}.
\frac{-16-3}{4}+\frac{1}{2}\times 6+\frac{5}{8}\times \frac{-2}{15}
Tā te mea he rite te tauraro o -\frac{16}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
-\frac{19}{4}+\frac{1}{2}\times 6+\frac{5}{8}\times \frac{-2}{15}
Tangohia te 3 i te -16, ka -19.
-\frac{19}{4}+\frac{6}{2}+\frac{5}{8}\times \frac{-2}{15}
Whakareatia te \frac{1}{2} ki te 6, ka \frac{6}{2}.
-\frac{19}{4}+3+\frac{5}{8}\times \frac{-2}{15}
Whakawehea te 6 ki te 2, kia riro ko 3.
-\frac{19}{4}+\frac{12}{4}+\frac{5}{8}\times \frac{-2}{15}
Me tahuri te 3 ki te hautau \frac{12}{4}.
\frac{-19+12}{4}+\frac{5}{8}\times \frac{-2}{15}
Tā te mea he rite te tauraro o -\frac{19}{4} me \frac{12}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
-\frac{7}{4}+\frac{5}{8}\times \frac{-2}{15}
Tāpirihia te -19 ki te 12, ka -7.
-\frac{7}{4}+\frac{5}{8}\left(-\frac{2}{15}\right)
Ka taea te hautanga \frac{-2}{15} te tuhi anō ko -\frac{2}{15} mā te tango i te tohu tōraro.
-\frac{7}{4}+\frac{5\left(-2\right)}{8\times 15}
Me whakarea te \frac{5}{8} ki te -\frac{2}{15} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
-\frac{7}{4}+\frac{-10}{120}
Mahia ngā whakarea i roto i te hautanga \frac{5\left(-2\right)}{8\times 15}.
-\frac{7}{4}-\frac{1}{12}
Whakahekea te hautanga \frac{-10}{120} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 10.
-\frac{21}{12}-\frac{1}{12}
Ko te maha noa iti rawa atu o 4 me 12 ko 12. Me tahuri -\frac{7}{4} me \frac{1}{12} ki te hautau me te tautūnga 12.
\frac{-21-1}{12}
Tā te mea he rite te tauraro o -\frac{21}{12} me \frac{1}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{-22}{12}
Tangohia te 1 i te -21, ka -22.
-\frac{11}{6}
Whakahekea te hautanga \frac{-22}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}