Aromātai
-\frac{44}{15}\approx -2.933333333
Tauwehe
-\frac{44}{15} = -2\frac{14}{15} = -2.933333333333333
Tohaina
Kua tāruatia ki te papatopenga
\frac{-4\sqrt{\frac{10+1}{5}}}{\sqrt{\frac{4\times 11+1}{11}}}
Whakareatia te 2 ki te 5, ka 10.
\frac{-4\sqrt{\frac{11}{5}}}{\sqrt{\frac{4\times 11+1}{11}}}
Tāpirihia te 10 ki te 1, ka 11.
\frac{-4\times \frac{\sqrt{11}}{\sqrt{5}}}{\sqrt{\frac{4\times 11+1}{11}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{11}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{11}}{\sqrt{5}}.
\frac{-4\times \frac{\sqrt{11}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\sqrt{\frac{4\times 11+1}{11}}}
Whakangāwaritia te tauraro o \frac{\sqrt{11}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{-4\times \frac{\sqrt{11}\sqrt{5}}{5}}{\sqrt{\frac{4\times 11+1}{11}}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{-4\times \frac{\sqrt{55}}{5}}{\sqrt{\frac{4\times 11+1}{11}}}
Hei whakarea \sqrt{11} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\frac{-4\sqrt{55}}{5}}{\sqrt{\frac{4\times 11+1}{11}}}
Tuhia te -4\times \frac{\sqrt{55}}{5} hei hautanga kotahi.
\frac{\frac{-4\sqrt{55}}{5}}{\sqrt{\frac{44+1}{11}}}
Whakareatia te 4 ki te 11, ka 44.
\frac{\frac{-4\sqrt{55}}{5}}{\sqrt{\frac{45}{11}}}
Tāpirihia te 44 ki te 1, ka 45.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{\sqrt{45}}{\sqrt{11}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{45}{11}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{45}}{\sqrt{11}}.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{5}}{\sqrt{11}}}
Tauwehea te 45=3^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 5} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{5}. Tuhia te pūtakerua o te 3^{2}.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{5}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{3\sqrt{5}}{\sqrt{11}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{11}.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{5}\sqrt{11}}{11}}
Ko te pūrua o \sqrt{11} ko 11.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{55}}{11}}
Hei whakarea \sqrt{5} me \sqrt{11}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-4\sqrt{55}\times 11}{5\times 3\sqrt{55}}
Whakawehe \frac{-4\sqrt{55}}{5} ki te \frac{3\sqrt{55}}{11} mā te whakarea \frac{-4\sqrt{55}}{5} ki te tau huripoki o \frac{3\sqrt{55}}{11}.
\frac{-4\times 11}{3\times 5}
Me whakakore tahi te \sqrt{55} i te taurunga me te tauraro.
\frac{4\times 11}{-3\times 5}
Me whakakore tahi te -1 i te taurunga me te tauraro.
\frac{44}{-3\times 5}
Whakareatia te 4 ki te 11, ka 44.
\frac{44}{-15}
Whakareatia te -3 ki te 5, ka -15.
-\frac{44}{15}
Ka taea te hautanga \frac{44}{-15} te tuhi anō ko -\frac{44}{15} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}