Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-4\sqrt{\frac{10+1}{5}}}{\sqrt{\frac{4\times 11+1}{11}}}
Whakareatia te 2 ki te 5, ka 10.
\frac{-4\sqrt{\frac{11}{5}}}{\sqrt{\frac{4\times 11+1}{11}}}
Tāpirihia te 10 ki te 1, ka 11.
\frac{-4\times \frac{\sqrt{11}}{\sqrt{5}}}{\sqrt{\frac{4\times 11+1}{11}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{11}{5}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{11}}{\sqrt{5}}.
\frac{-4\times \frac{\sqrt{11}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{\sqrt{\frac{4\times 11+1}{11}}}
Whakangāwaritia te tauraro o \frac{\sqrt{11}}{\sqrt{5}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{5}.
\frac{-4\times \frac{\sqrt{11}\sqrt{5}}{5}}{\sqrt{\frac{4\times 11+1}{11}}}
Ko te pūrua o \sqrt{5} ko 5.
\frac{-4\times \frac{\sqrt{55}}{5}}{\sqrt{\frac{4\times 11+1}{11}}}
Hei whakarea \sqrt{11} me \sqrt{5}, whakareatia ngā tau i raro i te pūtake rua.
\frac{\frac{-4\sqrt{55}}{5}}{\sqrt{\frac{4\times 11+1}{11}}}
Tuhia te -4\times \frac{\sqrt{55}}{5} hei hautanga kotahi.
\frac{\frac{-4\sqrt{55}}{5}}{\sqrt{\frac{44+1}{11}}}
Whakareatia te 4 ki te 11, ka 44.
\frac{\frac{-4\sqrt{55}}{5}}{\sqrt{\frac{45}{11}}}
Tāpirihia te 44 ki te 1, ka 45.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{\sqrt{45}}{\sqrt{11}}}
Tuhia anō te pūtake rua o te whakawehenga \sqrt{\frac{45}{11}} hei whakawehenga o ngā pūtake rua \frac{\sqrt{45}}{\sqrt{11}}.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{5}}{\sqrt{11}}}
Tauwehea te 45=3^{2}\times 5. Tuhia anō te pūtake rua o te hua \sqrt{3^{2}\times 5} hei hua o ngā pūtake rua \sqrt{3^{2}}\sqrt{5}. Tuhia te pūtakerua o te 3^{2}.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{5}\sqrt{11}}{\left(\sqrt{11}\right)^{2}}}
Whakangāwaritia te tauraro o \frac{3\sqrt{5}}{\sqrt{11}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{11}.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{5}\sqrt{11}}{11}}
Ko te pūrua o \sqrt{11} ko 11.
\frac{\frac{-4\sqrt{55}}{5}}{\frac{3\sqrt{55}}{11}}
Hei whakarea \sqrt{5} me \sqrt{11}, whakareatia ngā tau i raro i te pūtake rua.
\frac{-4\sqrt{55}\times 11}{5\times 3\sqrt{55}}
Whakawehe \frac{-4\sqrt{55}}{5} ki te \frac{3\sqrt{55}}{11} mā te whakarea \frac{-4\sqrt{55}}{5} ki te tau huripoki o \frac{3\sqrt{55}}{11}.
\frac{-4\times 11}{3\times 5}
Me whakakore tahi te \sqrt{55} i te taurunga me te tauraro.
\frac{4\times 11}{-3\times 5}
Me whakakore tahi te -1 i te taurunga me te tauraro.
\frac{44}{-3\times 5}
Whakareatia te 4 ki te 11, ka 44.
\frac{44}{-15}
Whakareatia te -3 ki te 5, ka -15.
-\frac{44}{15}
Ka taea te hautanga \frac{44}{-15} te tuhi anō ko -\frac{44}{15} mā te tango i te tohu tōraro.