Aromātai
\frac{7}{6}\approx 1.166666667
Tauwehe
\frac{7}{2 \cdot 3} = 1\frac{1}{6} = 1.1666666666666667
Tohaina
Kua tāruatia ki te papatopenga
-\frac{24+1}{6}-\frac{\frac{0\times 7+28}{9}}{-\frac{7}{12}}
Whakareatia te 4 ki te 6, ka 24.
-\frac{25}{6}-\frac{\frac{0\times 7+28}{9}}{-\frac{7}{12}}
Tāpirihia te 24 ki te 1, ka 25.
-\frac{25}{6}-\frac{\left(0\times 7+28\right)\times 12}{9\left(-7\right)}
Whakawehe \frac{0\times 7+28}{9} ki te -\frac{7}{12} mā te whakarea \frac{0\times 7+28}{9} ki te tau huripoki o -\frac{7}{12}.
-\frac{25}{6}-\frac{4\times 28}{-7\times 3}
Me whakakore tahi te 3 i te taurunga me te tauraro.
-\frac{25}{6}-\frac{112}{-7\times 3}
Whakareatia te 4 ki te 28, ka 112.
-\frac{25}{6}-\frac{112}{-21}
Whakareatia te -7 ki te 3, ka -21.
-\frac{25}{6}-\left(-\frac{16}{3}\right)
Whakahekea te hautanga \frac{112}{-21} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 7.
-\frac{25}{6}+\frac{16}{3}
Ko te tauaro o -\frac{16}{3} ko \frac{16}{3}.
-\frac{25}{6}+\frac{32}{6}
Ko te maha noa iti rawa atu o 6 me 3 ko 6. Me tahuri -\frac{25}{6} me \frac{16}{3} ki te hautau me te tautūnga 6.
\frac{-25+32}{6}
Tā te mea he rite te tauraro o -\frac{25}{6} me \frac{32}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{6}
Tāpirihia te -25 ki te 32, ka 7.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}