Whakaoti mō n
n=\frac{\sqrt{7}+5}{9}\approx 0.849527923
n=\frac{5-\sqrt{7}}{9}\approx 0.261583188
Tohaina
Kua tāruatia ki te papatopenga
-4=n\left(18\left(n-1\right)-2\right)
Whakareatia te 2 ki te 9, ka 18.
-4=n\left(18n-18-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 18 ki te n-1.
-4=n\left(18n-20\right)
Tangohia te 2 i te -18, ka -20.
-4=18n^{2}-20n
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 18n-20.
18n^{2}-20n=-4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
18n^{2}-20n+4=0
Me tāpiri te 4 ki ngā taha e rua.
n=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 18\times 4}}{2\times 18}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 18 mō a, -20 mō b, me 4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-20\right)±\sqrt{400-4\times 18\times 4}}{2\times 18}
Pūrua -20.
n=\frac{-\left(-20\right)±\sqrt{400-72\times 4}}{2\times 18}
Whakareatia -4 ki te 18.
n=\frac{-\left(-20\right)±\sqrt{400-288}}{2\times 18}
Whakareatia -72 ki te 4.
n=\frac{-\left(-20\right)±\sqrt{112}}{2\times 18}
Tāpiri 400 ki te -288.
n=\frac{-\left(-20\right)±4\sqrt{7}}{2\times 18}
Tuhia te pūtakerua o te 112.
n=\frac{20±4\sqrt{7}}{2\times 18}
Ko te tauaro o -20 ko 20.
n=\frac{20±4\sqrt{7}}{36}
Whakareatia 2 ki te 18.
n=\frac{4\sqrt{7}+20}{36}
Nā, me whakaoti te whārite n=\frac{20±4\sqrt{7}}{36} ina he tāpiri te ±. Tāpiri 20 ki te 4\sqrt{7}.
n=\frac{\sqrt{7}+5}{9}
Whakawehe 20+4\sqrt{7} ki te 36.
n=\frac{20-4\sqrt{7}}{36}
Nā, me whakaoti te whārite n=\frac{20±4\sqrt{7}}{36} ina he tango te ±. Tango 4\sqrt{7} mai i 20.
n=\frac{5-\sqrt{7}}{9}
Whakawehe 20-4\sqrt{7} ki te 36.
n=\frac{\sqrt{7}+5}{9} n=\frac{5-\sqrt{7}}{9}
Kua oti te whārite te whakatau.
-4=n\left(18\left(n-1\right)-2\right)
Whakareatia te 2 ki te 9, ka 18.
-4=n\left(18n-18-2\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 18 ki te n-1.
-4=n\left(18n-20\right)
Tangohia te 2 i te -18, ka -20.
-4=18n^{2}-20n
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 18n-20.
18n^{2}-20n=-4
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{18n^{2}-20n}{18}=-\frac{4}{18}
Whakawehea ngā taha e rua ki te 18.
n^{2}+\left(-\frac{20}{18}\right)n=-\frac{4}{18}
Mā te whakawehe ki te 18 ka wetekia te whakareanga ki te 18.
n^{2}-\frac{10}{9}n=-\frac{4}{18}
Whakahekea te hautanga \frac{-20}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n^{2}-\frac{10}{9}n=-\frac{2}{9}
Whakahekea te hautanga \frac{-4}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n^{2}-\frac{10}{9}n+\left(-\frac{5}{9}\right)^{2}=-\frac{2}{9}+\left(-\frac{5}{9}\right)^{2}
Whakawehea te -\frac{10}{9}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{9}. Nā, tāpiria te pūrua o te -\frac{5}{9} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-\frac{10}{9}n+\frac{25}{81}=-\frac{2}{9}+\frac{25}{81}
Pūruatia -\frac{5}{9} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-\frac{10}{9}n+\frac{25}{81}=\frac{7}{81}
Tāpiri -\frac{2}{9} ki te \frac{25}{81} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n-\frac{5}{9}\right)^{2}=\frac{7}{81}
Tauwehea n^{2}-\frac{10}{9}n+\frac{25}{81}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{5}{9}\right)^{2}}=\sqrt{\frac{7}{81}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{5}{9}=\frac{\sqrt{7}}{9} n-\frac{5}{9}=-\frac{\sqrt{7}}{9}
Whakarūnātia.
n=\frac{\sqrt{7}+5}{9} n=\frac{5-\sqrt{7}}{9}
Me tāpiri \frac{5}{9} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}