Whakaoti mō x
x = \frac{\sqrt{19} + 3}{2} \approx 3.679449472
x=\frac{3-\sqrt{19}}{2}\approx -0.679449472
Graph
Tohaina
Kua tāruatia ki te papatopenga
-39+4x^{2}-12x+9=2\left(-10\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
-30+4x^{2}-12x=2\left(-10\right)
Tāpirihia te -39 ki te 9, ka -30.
-30+4x^{2}-12x=-20
Whakareatia te 2 ki te -10, ka -20.
-30+4x^{2}-12x+20=0
Me tāpiri te 20 ki ngā taha e rua.
-10+4x^{2}-12x=0
Tāpirihia te -30 ki te 20, ka -10.
4x^{2}-12x-10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\left(-10\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, -12 mō b, me -10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\left(-10\right)}}{2\times 4}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\left(-10\right)}}{2\times 4}
Whakareatia -4 ki te 4.
x=\frac{-\left(-12\right)±\sqrt{144+160}}{2\times 4}
Whakareatia -16 ki te -10.
x=\frac{-\left(-12\right)±\sqrt{304}}{2\times 4}
Tāpiri 144 ki te 160.
x=\frac{-\left(-12\right)±4\sqrt{19}}{2\times 4}
Tuhia te pūtakerua o te 304.
x=\frac{12±4\sqrt{19}}{2\times 4}
Ko te tauaro o -12 ko 12.
x=\frac{12±4\sqrt{19}}{8}
Whakareatia 2 ki te 4.
x=\frac{4\sqrt{19}+12}{8}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{19}}{8} ina he tāpiri te ±. Tāpiri 12 ki te 4\sqrt{19}.
x=\frac{\sqrt{19}+3}{2}
Whakawehe 12+4\sqrt{19} ki te 8.
x=\frac{12-4\sqrt{19}}{8}
Nā, me whakaoti te whārite x=\frac{12±4\sqrt{19}}{8} ina he tango te ±. Tango 4\sqrt{19} mai i 12.
x=\frac{3-\sqrt{19}}{2}
Whakawehe 12-4\sqrt{19} ki te 8.
x=\frac{\sqrt{19}+3}{2} x=\frac{3-\sqrt{19}}{2}
Kua oti te whārite te whakatau.
-39+4x^{2}-12x+9=2\left(-10\right)
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(2x-3\right)^{2}.
-30+4x^{2}-12x=2\left(-10\right)
Tāpirihia te -39 ki te 9, ka -30.
-30+4x^{2}-12x=-20
Whakareatia te 2 ki te -10, ka -20.
4x^{2}-12x=-20+30
Me tāpiri te 30 ki ngā taha e rua.
4x^{2}-12x=10
Tāpirihia te -20 ki te 30, ka 10.
\frac{4x^{2}-12x}{4}=\frac{10}{4}
Whakawehea ngā taha e rua ki te 4.
x^{2}+\left(-\frac{12}{4}\right)x=\frac{10}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
x^{2}-3x=\frac{10}{4}
Whakawehe -12 ki te 4.
x^{2}-3x=\frac{5}{2}
Whakahekea te hautanga \frac{10}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{5}{2}+\left(-\frac{3}{2}\right)^{2}
Whakawehea te -3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{3}{2}. Nā, tāpiria te pūrua o te -\frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-3x+\frac{9}{4}=\frac{5}{2}+\frac{9}{4}
Pūruatia -\frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-3x+\frac{9}{4}=\frac{19}{4}
Tāpiri \frac{5}{2} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{3}{2}\right)^{2}=\frac{19}{4}
Tauwehea x^{2}-3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{19}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{3}{2}=\frac{\sqrt{19}}{2} x-\frac{3}{2}=-\frac{\sqrt{19}}{2}
Whakarūnātia.
x=\frac{\sqrt{19}+3}{2} x=\frac{3-\sqrt{19}}{2}
Me tāpiri \frac{3}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}