Aromātai
-3y-\frac{2}{3y}
Tauwehe
\frac{-9y^{2}-2}{3y}
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3y+\frac{18}{-27y}
Whakawehea te -36y ki te 12, kia riro ko -3y.
\frac{-3y\left(-27\right)y}{-27y}+\frac{18}{-27y}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia -3y ki te \frac{-27y}{-27y}.
\frac{-3y\left(-27\right)y+18}{-27y}
Tā te mea he rite te tauraro o \frac{-3y\left(-27\right)y}{-27y} me \frac{18}{-27y}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{81y^{2}+18}{-27y}
Mahia ngā whakarea i roto o -3y\left(-27\right)y+18.
\frac{9\left(9y^{2}+2\right)}{-27y}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{81y^{2}+18}{-27y}.
\frac{9y^{2}+2}{-3y}
Me whakakore tahi te 9 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}