Aromātai
3\left(b-3a\right)
Whakaroha
3b-9a
Tohaina
Kua tāruatia ki te papatopenga
-36\left(\frac{3a}{12}-\frac{b}{12}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 12 ko 12. Whakareatia \frac{a}{4} ki te \frac{3}{3}.
-36\times \frac{3a-b}{12}
Tā te mea he rite te tauraro o \frac{3a}{12} me \frac{b}{12}, me tango rāua mā te tango i ō raua taurunga.
-3\left(3a-b\right)
Whakakorea atu te tauwehe pūnoa nui rawa 12 i roto i te 36 me te 12.
-9a+3b
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 3a-b.
-36\left(\frac{3a}{12}-\frac{b}{12}\right)
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 4 me 12 ko 12. Whakareatia \frac{a}{4} ki te \frac{3}{3}.
-36\times \frac{3a-b}{12}
Tā te mea he rite te tauraro o \frac{3a}{12} me \frac{b}{12}, me tango rāua mā te tango i ō raua taurunga.
-3\left(3a-b\right)
Whakakorea atu te tauwehe pūnoa nui rawa 12 i roto i te 36 me te 12.
-9a+3b
Whakamahia te āhuatanga tohatoha hei whakarea te -3 ki te 3a-b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}