Aromātai
-4.73
Tauwehe
-4.73
Tohaina
Kua tāruatia ki te papatopenga
\frac{-\frac{800+16}{25}}{-8\times 4}+2.5^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Whakareatia te 32 ki te 25, ka 800.
\frac{-\frac{816}{25}}{-8\times 4}+2.5^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Tāpirihia te 800 ki te 16, ka 816.
\frac{-\frac{816}{25}}{-32}+2.5^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Whakareatia te -8 ki te 4, ka -32.
\frac{-816}{25\left(-32\right)}+2.5^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Tuhia te \frac{-\frac{816}{25}}{-32} hei hautanga kotahi.
\frac{-816}{-800}+2.5^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Whakareatia te 25 ki te -32, ka -800.
\frac{51}{50}+2.5^{2}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Whakahekea te hautanga \frac{-816}{-800} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te -16.
\frac{51}{50}+6.25+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Tātaihia te 2.5 mā te pū o 2, kia riro ko 6.25.
\frac{51}{50}+\frac{25}{4}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Me tahuri ki tau ā-ira 6.25 ki te hautau \frac{625}{100}. Whakahekea te hautanga \frac{625}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
\frac{102}{100}+\frac{625}{100}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Ko te maha noa iti rawa atu o 50 me 4 ko 100. Me tahuri \frac{51}{50} me \frac{25}{4} ki te hautau me te tautūnga 100.
\frac{102+625}{100}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Tā te mea he rite te tauraro o \frac{102}{100} me \frac{625}{100}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{727}{100}+\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Tāpirihia te 102 ki te 625, ka 727.
\frac{727}{100}+\left(\frac{3}{6}+\frac{4}{6}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Ko te maha noa iti rawa atu o 2 me 3 ko 6. Me tahuri \frac{1}{2} me \frac{2}{3} ki te hautau me te tautūnga 6.
\frac{727}{100}+\left(\frac{3+4}{6}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{4}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{727}{100}+\left(\frac{7}{6}-\frac{3}{4}-\frac{11}{12}\right)\times 24
Tāpirihia te 3 ki te 4, ka 7.
\frac{727}{100}+\left(\frac{14}{12}-\frac{9}{12}-\frac{11}{12}\right)\times 24
Ko te maha noa iti rawa atu o 6 me 4 ko 12. Me tahuri \frac{7}{6} me \frac{3}{4} ki te hautau me te tautūnga 12.
\frac{727}{100}+\left(\frac{14-9}{12}-\frac{11}{12}\right)\times 24
Tā te mea he rite te tauraro o \frac{14}{12} me \frac{9}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{727}{100}+\left(\frac{5}{12}-\frac{11}{12}\right)\times 24
Tangohia te 9 i te 14, ka 5.
\frac{727}{100}+\frac{5-11}{12}\times 24
Tā te mea he rite te tauraro o \frac{5}{12} me \frac{11}{12}, me tango rāua mā te tango i ō raua taurunga.
\frac{727}{100}+\frac{-6}{12}\times 24
Tangohia te 11 i te 5, ka -6.
\frac{727}{100}-\frac{1}{2}\times 24
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{727}{100}+\frac{-24}{2}
Tuhia te -\frac{1}{2}\times 24 hei hautanga kotahi.
\frac{727}{100}-12
Whakawehea te -24 ki te 2, kia riro ko -12.
\frac{727}{100}-\frac{1200}{100}
Me tahuri te 12 ki te hautau \frac{1200}{100}.
\frac{727-1200}{100}
Tā te mea he rite te tauraro o \frac{727}{100} me \frac{1200}{100}, me tango rāua mā te tango i ō raua taurunga.
-\frac{473}{100}
Tangohia te 1200 i te 727, ka -473.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}