Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x\left(2+3x\right)=1
Pahekotia te -x me 4x, ka 3x.
-6x-9x^{2}=1
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te 2+3x.
-6x-9x^{2}-1=0
Tangohia te 1 mai i ngā taha e rua.
-9x^{2}-6x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -9 mō a, -6 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-9\right)\left(-1\right)}}{2\left(-9\right)}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+36\left(-1\right)}}{2\left(-9\right)}
Whakareatia -4 ki te -9.
x=\frac{-\left(-6\right)±\sqrt{36-36}}{2\left(-9\right)}
Whakareatia 36 ki te -1.
x=\frac{-\left(-6\right)±\sqrt{0}}{2\left(-9\right)}
Tāpiri 36 ki te -36.
x=-\frac{-6}{2\left(-9\right)}
Tuhia te pūtakerua o te 0.
x=\frac{6}{2\left(-9\right)}
Ko te tauaro o -6 ko 6.
x=\frac{6}{-18}
Whakareatia 2 ki te -9.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{6}{-18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
-3x\left(2+3x\right)=1
Pahekotia te -x me 4x, ka 3x.
-6x-9x^{2}=1
Whakamahia te āhuatanga tohatoha hei whakarea te -3x ki te 2+3x.
-9x^{2}-6x=1
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-9x^{2}-6x}{-9}=\frac{1}{-9}
Whakawehea ngā taha e rua ki te -9.
x^{2}+\left(-\frac{6}{-9}\right)x=\frac{1}{-9}
Mā te whakawehe ki te -9 ka wetekia te whakareanga ki te -9.
x^{2}+\frac{2}{3}x=\frac{1}{-9}
Whakahekea te hautanga \frac{-6}{-9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{2}{3}x=-\frac{1}{9}
Whakawehe 1 ki te -9.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=-\frac{1}{9}+\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{-1+1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{3}x+\frac{1}{9}=0
Tāpiri -\frac{1}{9} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{3}\right)^{2}=0
Tauwehea x^{2}+\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{0}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{3}=0 x+\frac{1}{3}=0
Whakarūnātia.
x=-\frac{1}{3} x=-\frac{1}{3}
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.
x=-\frac{1}{3}
Kua oti te whārite te whakatau. He ōrite ngā whakatau.