Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-4x^{4}y^{2}}{-2x^{2}y^{2}}\right)+2x^{2}y
Me whakakore tahi te -3xy i te taurunga me te tauraro.
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-2x^{2}}{-1}\right)+2x^{2}y
Me whakakore tahi te 2x^{2}y^{2} i te taurunga me te tauraro.
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-2x^{2}\right)+2x^{2}y
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(-2\right)x+2x^{2}y
Tangohia te 2x^{2} i te 2x^{2}, ka 0.
x-\left(x^{2}-x^{2}+1-xy-1\right)\left(-2\right)x+2x^{2}y
Hei kimi i te tauaro o x^{2}-1, kimihia te tauaro o ia taurangi.
x-\left(1-xy-1\right)\left(-2\right)x+2x^{2}y
Pahekotia te x^{2} me -x^{2}, ka 0.
x-\left(-xy\left(-2\right)x\right)+2x^{2}y
Tangohia te 1 i te 1, ka 0.
x-2xyx+2x^{2}y
Whakareatia te -1 ki te -2, ka 2.
x-2x^{2}y+2x^{2}y
Whakareatia te x ki te x, ka x^{2}.
x
Pahekotia te -2x^{2}y me 2x^{2}y, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-4x^{4}y^{2}}{-2x^{2}y^{2}}\right)+2x^{2}y)
Me whakakore tahi te -3xy i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-2x^{2}}{-1}\right)+2x^{2}y)
Me whakakore tahi te 2x^{2}y^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-2x^{2}\right)+2x^{2}y)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(-2\right)x+2x^{2}y)
Tangohia te 2x^{2} i te 2x^{2}, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-x^{2}+1-xy-1\right)\left(-2\right)x+2x^{2}y)
Hei kimi i te tauaro o x^{2}-1, kimihia te tauaro o ia taurangi.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(1-xy-1\right)\left(-2\right)x+2x^{2}y)
Pahekotia te x^{2} me -x^{2}, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(-xy\left(-2\right)x\right)+2x^{2}y)
Tangohia te 1 i te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2xyx+2x^{2}y)
Whakareatia te -1 ki te -2, ka 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2x^{2}y+2x^{2}y)
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Pahekotia te -2x^{2}y me 2x^{2}y, ka 0.
x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.