Aromātai
x
Kimi Pārōnaki e ai ki x
1
Tohaina
Kua tāruatia ki te papatopenga
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-4x^{4}y^{2}}{-2x^{2}y^{2}}\right)+2x^{2}y
Me whakakore tahi te -3xy i te taurunga me te tauraro.
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-2x^{2}}{-1}\right)+2x^{2}y
Me whakakore tahi te 2x^{2}y^{2} i te taurunga me te tauraro.
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-2x^{2}\right)+2x^{2}y
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(-2\right)x+2x^{2}y
Tangohia te 2x^{2} i te 2x^{2}, ka 0.
x-\left(x^{2}-x^{2}+1-xy-1\right)\left(-2\right)x+2x^{2}y
Hei kimi i te tauaro o x^{2}-1, kimihia te tauaro o ia taurangi.
x-\left(1-xy-1\right)\left(-2\right)x+2x^{2}y
Pahekotia te x^{2} me -x^{2}, ka 0.
x-\left(-xy\left(-2\right)x\right)+2x^{2}y
Tangohia te 1 i te 1, ka 0.
x-2xyx+2x^{2}y
Whakareatia te -1 ki te -2, ka 2.
x-2x^{2}y+2x^{2}y
Whakareatia te x ki te x, ka x^{2}.
x
Pahekotia te -2x^{2}y me 2x^{2}y, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-4x^{4}y^{2}}{-2x^{2}y^{2}}\right)+2x^{2}y)
Me whakakore tahi te -3xy i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-\frac{-2x^{2}}{-1}\right)+2x^{2}y)
Me whakakore tahi te 2x^{2}y^{2} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(2x^{2}-2x-2x^{2}\right)+2x^{2}y)
Ko te mea whakawehea ki te -1 ka hōmai i tōna kōaro.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-\left(x^{2}-1\right)-xy-1\right)\left(-2\right)x+2x^{2}y)
Tangohia te 2x^{2} i te 2x^{2}, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(x^{2}-x^{2}+1-xy-1\right)\left(-2\right)x+2x^{2}y)
Hei kimi i te tauaro o x^{2}-1, kimihia te tauaro o ia taurangi.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(1-xy-1\right)\left(-2\right)x+2x^{2}y)
Pahekotia te x^{2} me -x^{2}, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-\left(-xy\left(-2\right)x\right)+2x^{2}y)
Tangohia te 1 i te 1, ka 0.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2xyx+2x^{2}y)
Whakareatia te -1 ki te -2, ka 2.
\frac{\mathrm{d}}{\mathrm{d}x}(x-2x^{2}y+2x^{2}y)
Whakareatia te x ki te x, ka x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x)
Pahekotia te -2x^{2}y me 2x^{2}y, ka 0.
x^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
x^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}