Whakaoti mō x
x=-2
x = \frac{5}{3} = 1\frac{2}{3} \approx 1.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-1 ab=-3\times 10=-30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-30 2,-15 3,-10 5,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Tātaihia te tapeke mō ia takirua.
a=5 b=-6
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(-3x^{2}+5x\right)+\left(-6x+10\right)
Tuhia anō te -3x^{2}-x+10 hei \left(-3x^{2}+5x\right)+\left(-6x+10\right).
-x\left(3x-5\right)-2\left(3x-5\right)
Tauwehea te -x i te tuatahi me te -2 i te rōpū tuarua.
\left(3x-5\right)\left(-x-2\right)
Whakatauwehea atu te kīanga pātahi 3x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{5}{3} x=-2
Hei kimi otinga whārite, me whakaoti te 3x-5=0 me te -x-2=0.
-3x^{2}-x+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-3\right)\times 10}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -1 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+12\times 10}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2\left(-3\right)}
Whakareatia 12 ki te 10.
x=\frac{-\left(-1\right)±\sqrt{121}}{2\left(-3\right)}
Tāpiri 1 ki te 120.
x=\frac{-\left(-1\right)±11}{2\left(-3\right)}
Tuhia te pūtakerua o te 121.
x=\frac{1±11}{2\left(-3\right)}
Ko te tauaro o -1 ko 1.
x=\frac{1±11}{-6}
Whakareatia 2 ki te -3.
x=\frac{12}{-6}
Nā, me whakaoti te whārite x=\frac{1±11}{-6} ina he tāpiri te ±. Tāpiri 1 ki te 11.
x=-2
Whakawehe 12 ki te -6.
x=-\frac{10}{-6}
Nā, me whakaoti te whārite x=\frac{1±11}{-6} ina he tango te ±. Tango 11 mai i 1.
x=\frac{5}{3}
Whakahekea te hautanga \frac{-10}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-2 x=\frac{5}{3}
Kua oti te whārite te whakatau.
-3x^{2}-x+10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-3x^{2}-x+10-10=-10
Me tango 10 mai i ngā taha e rua o te whārite.
-3x^{2}-x=-10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
\frac{-3x^{2}-x}{-3}=-\frac{10}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{1}{-3}\right)x=-\frac{10}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+\frac{1}{3}x=-\frac{10}{-3}
Whakawehe -1 ki te -3.
x^{2}+\frac{1}{3}x=\frac{10}{3}
Whakawehe -10 ki te -3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{10}{3}+\left(\frac{1}{6}\right)^{2}
Whakawehea te \frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{6}. Nā, tāpiria te pūrua o te \frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{10}{3}+\frac{1}{36}
Pūruatia \frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{121}{36}
Tāpiri \frac{10}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{6}\right)^{2}=\frac{121}{36}
Tauwehea x^{2}+\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{121}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{6}=\frac{11}{6} x+\frac{1}{6}=-\frac{11}{6}
Whakarūnātia.
x=\frac{5}{3} x=-2
Me tango \frac{1}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}