Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-x^{2}-2x+3=0
Whakawehea ngā taha e rua ki te 3.
a+b=-2 ab=-3=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Tuhia anō te -x^{2}-2x+3 hei \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(-x+1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-3
Hei kimi otinga whārite, me whakaoti te -x+1=0 me te x+3=0.
-3x^{2}-6x+9=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\times 9}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -6 mō b, me 9 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\times 9}}{2\left(-3\right)}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+12\times 9}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\left(-3\right)}
Whakareatia 12 ki te 9.
x=\frac{-\left(-6\right)±\sqrt{144}}{2\left(-3\right)}
Tāpiri 36 ki te 108.
x=\frac{-\left(-6\right)±12}{2\left(-3\right)}
Tuhia te pūtakerua o te 144.
x=\frac{6±12}{2\left(-3\right)}
Ko te tauaro o -6 ko 6.
x=\frac{6±12}{-6}
Whakareatia 2 ki te -3.
x=\frac{18}{-6}
Nā, me whakaoti te whārite x=\frac{6±12}{-6} ina he tāpiri te ±. Tāpiri 6 ki te 12.
x=-3
Whakawehe 18 ki te -6.
x=-\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{6±12}{-6} ina he tango te ±. Tango 12 mai i 6.
x=1
Whakawehe -6 ki te -6.
x=-3 x=1
Kua oti te whārite te whakatau.
-3x^{2}-6x+9=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-3x^{2}-6x+9-9=-9
Me tango 9 mai i ngā taha e rua o te whārite.
-3x^{2}-6x=-9
Mā te tango i te 9 i a ia ake anō ka toe ko te 0.
\frac{-3x^{2}-6x}{-3}=-\frac{9}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{6}{-3}\right)x=-\frac{9}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+2x=-\frac{9}{-3}
Whakawehe -6 ki te -3.
x^{2}+2x=3
Whakawehe -9 ki te -3.
x^{2}+2x+1^{2}=3+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+2x+1=3+1
Pūrua 1.
x^{2}+2x+1=4
Tāpiri 3 ki te 1.
\left(x+1\right)^{2}=4
Tauwehea x^{2}+2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+1=2 x+1=-2
Whakarūnātia.
x=1 x=-3
Me tango 1 mai i ngā taha e rua o te whārite.