Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(-x^{2}-2x+3\right)
Tauwehea te 3.
a+b=-2 ab=-3=-3
Whakaarohia te -x^{2}-2x+3. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei -x^{2}+ax+bx+3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Tuhia anō te -x^{2}-2x+3 hei \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Tauwehea te x i te tuatahi me te 3 i te rōpū tuarua.
\left(-x+1\right)\left(x+3\right)
Whakatauwehea atu te kīanga pātahi -x+1 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(-x+1\right)\left(x+3\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-3x^{2}-6x+9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\times 9}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\times 9}}{2\left(-3\right)}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36+12\times 9}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\left(-3\right)}
Whakareatia 12 ki te 9.
x=\frac{-\left(-6\right)±\sqrt{144}}{2\left(-3\right)}
Tāpiri 36 ki te 108.
x=\frac{-\left(-6\right)±12}{2\left(-3\right)}
Tuhia te pūtakerua o te 144.
x=\frac{6±12}{2\left(-3\right)}
Ko te tauaro o -6 ko 6.
x=\frac{6±12}{-6}
Whakareatia 2 ki te -3.
x=\frac{18}{-6}
Nā, me whakaoti te whārite x=\frac{6±12}{-6} ina he tāpiri te ±. Tāpiri 6 ki te 12.
x=-3
Whakawehe 18 ki te -6.
x=-\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{6±12}{-6} ina he tango te ±. Tango 12 mai i 6.
x=1
Whakawehe -6 ki te -6.
-3x^{2}-6x+9=-3\left(x-\left(-3\right)\right)\left(x-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -3 mō te x_{1} me te 1 mō te x_{2}.
-3x^{2}-6x+9=-3\left(x+3\right)\left(x-1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.