Whakaoti mō x
x = \frac{\sqrt{157} - 5}{6} \approx 1.254994014
x=\frac{-\sqrt{157}-5}{6}\approx -2.921660681
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x^{2}-3x+11-2x=0
Tangohia te 2x mai i ngā taha e rua.
-3x^{2}-5x+11=0
Pahekotia te -3x me -2x, ka -5x.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-3\right)\times 11}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -5 mō b, me 11 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-3\right)\times 11}}{2\left(-3\right)}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25+12\times 11}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-5\right)±\sqrt{25+132}}{2\left(-3\right)}
Whakareatia 12 ki te 11.
x=\frac{-\left(-5\right)±\sqrt{157}}{2\left(-3\right)}
Tāpiri 25 ki te 132.
x=\frac{5±\sqrt{157}}{2\left(-3\right)}
Ko te tauaro o -5 ko 5.
x=\frac{5±\sqrt{157}}{-6}
Whakareatia 2 ki te -3.
x=\frac{\sqrt{157}+5}{-6}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{157}}{-6} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{157}.
x=\frac{-\sqrt{157}-5}{6}
Whakawehe 5+\sqrt{157} ki te -6.
x=\frac{5-\sqrt{157}}{-6}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{157}}{-6} ina he tango te ±. Tango \sqrt{157} mai i 5.
x=\frac{\sqrt{157}-5}{6}
Whakawehe 5-\sqrt{157} ki te -6.
x=\frac{-\sqrt{157}-5}{6} x=\frac{\sqrt{157}-5}{6}
Kua oti te whārite te whakatau.
-3x^{2}-3x+11-2x=0
Tangohia te 2x mai i ngā taha e rua.
-3x^{2}-5x+11=0
Pahekotia te -3x me -2x, ka -5x.
-3x^{2}-5x=-11
Tangohia te 11 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\frac{-3x^{2}-5x}{-3}=-\frac{11}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{5}{-3}\right)x=-\frac{11}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+\frac{5}{3}x=-\frac{11}{-3}
Whakawehe -5 ki te -3.
x^{2}+\frac{5}{3}x=\frac{11}{3}
Whakawehe -11 ki te -3.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\frac{11}{3}+\left(\frac{5}{6}\right)^{2}
Whakawehea te \frac{5}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{6}. Nā, tāpiria te pūrua o te \frac{5}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{11}{3}+\frac{25}{36}
Pūruatia \frac{5}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{157}{36}
Tāpiri \frac{11}{3} ki te \frac{25}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{6}\right)^{2}=\frac{157}{36}
Tauwehea x^{2}+\frac{5}{3}x+\frac{25}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{157}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{6}=\frac{\sqrt{157}}{6} x+\frac{5}{6}=-\frac{\sqrt{157}}{6}
Whakarūnātia.
x=\frac{\sqrt{157}-5}{6} x=\frac{-\sqrt{157}-5}{6}
Me tango \frac{5}{6} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}