Whakaoti mō x (complex solution)
x=-4+i
x=-4-i
Graph
Tohaina
Kua tāruatia ki te papatopenga
-3x^{2}-24x-51=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-3\right)\left(-51\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -24 mō b, me -51 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-3\right)\left(-51\right)}}{2\left(-3\right)}
Pūrua -24.
x=\frac{-\left(-24\right)±\sqrt{576+12\left(-51\right)}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-24\right)±\sqrt{576-612}}{2\left(-3\right)}
Whakareatia 12 ki te -51.
x=\frac{-\left(-24\right)±\sqrt{-36}}{2\left(-3\right)}
Tāpiri 576 ki te -612.
x=\frac{-\left(-24\right)±6i}{2\left(-3\right)}
Tuhia te pūtakerua o te -36.
x=\frac{24±6i}{2\left(-3\right)}
Ko te tauaro o -24 ko 24.
x=\frac{24±6i}{-6}
Whakareatia 2 ki te -3.
x=\frac{24+6i}{-6}
Nā, me whakaoti te whārite x=\frac{24±6i}{-6} ina he tāpiri te ±. Tāpiri 24 ki te 6i.
x=-4-i
Whakawehe 24+6i ki te -6.
x=\frac{24-6i}{-6}
Nā, me whakaoti te whārite x=\frac{24±6i}{-6} ina he tango te ±. Tango 6i mai i 24.
x=-4+i
Whakawehe 24-6i ki te -6.
x=-4-i x=-4+i
Kua oti te whārite te whakatau.
-3x^{2}-24x-51=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-3x^{2}-24x-51-\left(-51\right)=-\left(-51\right)
Me tāpiri 51 ki ngā taha e rua o te whārite.
-3x^{2}-24x=-\left(-51\right)
Mā te tango i te -51 i a ia ake anō ka toe ko te 0.
-3x^{2}-24x=51
Tango -51 mai i 0.
\frac{-3x^{2}-24x}{-3}=\frac{51}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{24}{-3}\right)x=\frac{51}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+8x=\frac{51}{-3}
Whakawehe -24 ki te -3.
x^{2}+8x=-17
Whakawehe 51 ki te -3.
x^{2}+8x+4^{2}=-17+4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=-17+16
Pūrua 4.
x^{2}+8x+16=-1
Tāpiri -17 ki te 16.
\left(x+4\right)^{2}=-1
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{-1}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=i x+4=-i
Whakarūnātia.
x=-4+i x=-4-i
Me tango 4 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}