Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x^{2}-24x-13+13=0
Me tāpiri te 13 ki ngā taha e rua.
-3x^{2}-24x=0
Tāpirihia te -13 ki te 13, ka 0.
x\left(-3x-24\right)=0
Tauwehea te x.
x=0 x=-8
Hei kimi otinga whārite, me whakaoti te x=0 me te -3x-24=0.
-3x^{2}-24x-13=-13
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
-3x^{2}-24x-13-\left(-13\right)=-13-\left(-13\right)
Me tāpiri 13 ki ngā taha e rua o te whārite.
-3x^{2}-24x-13-\left(-13\right)=0
Mā te tango i te -13 i a ia ake anō ka toe ko te 0.
-3x^{2}-24x=0
Tango -13 mai i -13.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -24 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±24}{2\left(-3\right)}
Tuhia te pūtakerua o te \left(-24\right)^{2}.
x=\frac{24±24}{2\left(-3\right)}
Ko te tauaro o -24 ko 24.
x=\frac{24±24}{-6}
Whakareatia 2 ki te -3.
x=\frac{48}{-6}
Nā, me whakaoti te whārite x=\frac{24±24}{-6} ina he tāpiri te ±. Tāpiri 24 ki te 24.
x=-8
Whakawehe 48 ki te -6.
x=\frac{0}{-6}
Nā, me whakaoti te whārite x=\frac{24±24}{-6} ina he tango te ±. Tango 24 mai i 24.
x=0
Whakawehe 0 ki te -6.
x=-8 x=0
Kua oti te whārite te whakatau.
-3x^{2}-24x-13=-13
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-3x^{2}-24x-13-\left(-13\right)=-13-\left(-13\right)
Me tāpiri 13 ki ngā taha e rua o te whārite.
-3x^{2}-24x=-13-\left(-13\right)
Mā te tango i te -13 i a ia ake anō ka toe ko te 0.
-3x^{2}-24x=0
Tango -13 mai i -13.
\frac{-3x^{2}-24x}{-3}=\frac{0}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{24}{-3}\right)x=\frac{0}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+8x=\frac{0}{-3}
Whakawehe -24 ki te -3.
x^{2}+8x=0
Whakawehe 0 ki te -3.
x^{2}+8x+4^{2}=4^{2}
Whakawehea te 8, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 4. Nā, tāpiria te pūrua o te 4 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+8x+16=16
Pūrua 4.
\left(x+4\right)^{2}=16
Tauwehea x^{2}+8x+16. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+4\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+4=4 x+4=-4
Whakarūnātia.
x=0 x=-8
Me tango 4 mai i ngā taha e rua o te whārite.