Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-2 ab=-3=-3
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -3x^{2}+ax+bx+1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
a=1 b=-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Ko te takirua anake pērā ko te otinga pūnaha.
\left(-3x^{2}+x\right)+\left(-3x+1\right)
Tuhia anō te -3x^{2}-2x+1 hei \left(-3x^{2}+x\right)+\left(-3x+1\right).
-x\left(3x-1\right)-\left(3x-1\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(3x-1\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi 3x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{3} x=-1
Hei kimi otinga whārite, me whakaoti te 3x-1=0 me te -x-1=0.
-3x^{2}-2x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2\left(-3\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -3 mō a, -2 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2\left(-3\right)}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-3\right)}
Whakareatia -4 ki te -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-3\right)}
Tāpiri 4 ki te 12.
x=\frac{-\left(-2\right)±4}{2\left(-3\right)}
Tuhia te pūtakerua o te 16.
x=\frac{2±4}{2\left(-3\right)}
Ko te tauaro o -2 ko 2.
x=\frac{2±4}{-6}
Whakareatia 2 ki te -3.
x=\frac{6}{-6}
Nā, me whakaoti te whārite x=\frac{2±4}{-6} ina he tāpiri te ±. Tāpiri 2 ki te 4.
x=-1
Whakawehe 6 ki te -6.
x=-\frac{2}{-6}
Nā, me whakaoti te whārite x=\frac{2±4}{-6} ina he tango te ±. Tango 4 mai i 2.
x=\frac{1}{3}
Whakahekea te hautanga \frac{-2}{-6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-1 x=\frac{1}{3}
Kua oti te whārite te whakatau.
-3x^{2}-2x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
-3x^{2}-2x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
-3x^{2}-2x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{-3x^{2}-2x}{-3}=-\frac{1}{-3}
Whakawehea ngā taha e rua ki te -3.
x^{2}+\left(-\frac{2}{-3}\right)x=-\frac{1}{-3}
Mā te whakawehe ki te -3 ka wetekia te whakareanga ki te -3.
x^{2}+\frac{2}{3}x=-\frac{1}{-3}
Whakawehe -2 ki te -3.
x^{2}+\frac{2}{3}x=\frac{1}{3}
Whakawehe -1 ki te -3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{1}{3}+\left(\frac{1}{3}\right)^{2}
Whakawehea te \frac{2}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{3}. Nā, tāpiria te pūrua o te \frac{1}{3} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{1}{3}+\frac{1}{9}
Pūruatia \frac{1}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{4}{9}
Tāpiri \frac{1}{3} ki te \frac{1}{9} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{3}\right)^{2}=\frac{4}{9}
Tauwehea x^{2}+\frac{2}{3}x+\frac{1}{9}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{4}{9}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{3}=\frac{2}{3} x+\frac{1}{3}=-\frac{2}{3}
Whakarūnātia.
x=\frac{1}{3} x=-1
Me tango \frac{1}{3} mai i ngā taha e rua o te whārite.